Journal of Food and Nutrition Research
ISSN (Print): 2333-1119 ISSN (Online): 2333-1240 Website: http://www.sciepub.com/journal/jfnr Editor-in-chief: Prabhat Kumar Mandal
Open Access
Journal Browser
Go
Journal of Food and Nutrition Research. 2017, 5(12), 928-934
DOI: 10.12691/jfnr-5-12-8
Open AccessArticle

Study on Effect Elements of Exopolysaccharide Production of Lactobacillus Kimchi SR8 and DPPH Radical Scavenging Activity

Yulong Zhang1, Ping Hu1, and Min Fan, Qianwei Liao1

1School of Liquor and Food Engineering, Guizhou University, Guiyang, China

Pub. Date: December 08, 2017

Cite this paper:
Yulong Zhang, Ping Hu and Min Fan, Qianwei Liao. Study on Effect Elements of Exopolysaccharide Production of Lactobacillus Kimchi SR8 and DPPH Radical Scavenging Activity. Journal of Food and Nutrition Research. 2017; 5(12):928-934. doi: 10.12691/jfnr-5-12-8

Abstract

The correlation between exopolysaccharide production of Lactobacillus kimchi SR8 under different culture conditions and the DPPH radical scavenging activity of exopolysaccharide was studied. Lactobacillus kimchi SR8 produced 228.24 ± 2.23 mg/L exopolysaccharides with sucrose as the carbon source, Beef Extract-Peptone (2:1) as the nitrogen source and an initial pH of 6.50, whilst the DPPH radical scavenging activity of exopolysaccharides was only 6.85% ± 0.77% at a concentration of 0.20 mg/mL. However, the strain produced 206.79 ± 2.23 mg/L exopolysaccharides with glucose as the carbon source, Peptone-Tryptone (1:1) as the nitrogen source and an initial pH of 7.00, and the DPPH radical scavenging activity of exopolysaccharides increased to 28.34% ± 0.32% at the same concentration. The results showed no correlation between the exopolysaccharide production of lactic acid bacteria and the DPPH radical scavenging activity of exopolysaccharide. Therefore, the antioxidant activity should be taken into consideration when measures are taken to increase exopolysaccharide production if greater antioxidant activity of exopolysaccharides is preferred.

Keywords:
characterization exopolysaccharide free radical scavenging activity relationship

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Ismail, B., Nampoothiri, K.M., Production, purification and structural characterization of an exopolysaccharide produced by a probiotic Lactobacillus plantarum MTCC 9510, Archives of Microbiology, 192(12). 1049-1057. December 2010.
 
[2]  Surayot, U., Wang, J.G.., Seesuriyachan, P., Kuntiya, A., Tabarsa, M., Lee, Y., Kim, J.K., Park, W.J., You, S., Exopolysaccharides from lactic acid bacteria: Structural analysis, molecular weight effect on Immunomodulation, k International Journal of Biological Macromolecules, 68. 233-240. July 2014.
 
[3]  Kodali, V.P., Perali, R.S., Sen, R., Purification and partial elucidation of the structure of an antioxidant carbohydrate biopolymer from the probiotic bacterium Bacillus coagulans RK-02, Journal of Natural Products, 74(8). 1692-1697. August 2011.
 
[4]  Trabelsi, I., Ben Slima, S., Chaabane, H., Riadh, B.S., Purification and characterization of a novel exopolysaccharides produced by Lactobacillus sp. Ca6, International Journal of Biological Macromolecules, 74. 541-546. March 2015.
 
[5]  Ahmed, Z., Wang, Y.P., Anjum, N., Ahmad, A., Khan, S.T., Characterization of exopolysaccharide produced by Lactobacillus kefiranofaciens ZW3 isolated from Tibet kefir - part II, Food Hydrocolloids, 30(1). 343-350. January 2013.
 
[6]  Badel, S., Bernardi, T., Michaud, P., New perspectives for Lactobacilli exopolysaccharides, Biotechnology Advances, 29(1). 54-66. January-February 2011.
 
[7]  Nadkarni, M.A., Chen, Z.L., Wilkins, M.R., Hunter N., Comparative Genome Analysis of Lactobacillus rhamnosus Clinical Isolates from Initial Stages of Dental Pulp Infection: Identification of a New Exopolysaccharide Cluster, PLOS ONE, 9(3). 1-14. March 2014.
 
[8]  Shao, L., Wu, Z.J., Zhang, H., Chen, W., Ai, L.Z., Guo, B.H., Partial characterization and immunostimulatory activity of exopolysaccharides from Lactobacillus rhamnosus KF5, Carbohydrate Polymers, 107. 51-56. July 2014.
 
[9]  Zhang, L., Liu, C.H., Li, D., Zhao, Y.J., Zhang, X., Zeng, X.P., Yang, Z.N., Li, S.Y., Antioxidant activity of an exopolysaccharide isolated from Lactobacillus plantarum C88, International Journal of Biological Macromolecules, 54. 270-275. March 2013.
 
[10]  Li, W., Ji, J., Rui, X., Yu, J.J., Tang, W.Z., Chen, X.H., Jiang, M., Dong, M.S., Production of exopolysaccharides by Lactobacillus helveticus MB2-1 and its functional characteristics in vitro, LWT-Food Science and Technology, 59(2). 732-739. December 2014.
 
[11]  Grobben, G.J., Chin-Joe, I., Kitzen, V.A., Boels, I.C., Boer, F., Sikkema, J., De Bont, J.A.M., Enhancement of Exopolysaccharide Production by Lactobacillus delbrueckii subsp. bulgaricus NCFB 2772 with a Simplified Defined Medium, Applied and Environmental Microbiology, 64(4). 1333-1337. April 1998.
 
[12]  Pan, D.D., Mei, X.M., Antioxidant activity of an exopolysaccharide purified from Lactococcus lactis subsp. lactis 12, Carbohydrate Polymers, 80(3). 908-914. May 2010.
 
[13]  Li, S.J., Huang, R.H., Shah, N.P., Tao, X.Y., Xiong, Y.H., Wei, H., Antioxidant and antibacterial activities of exopolysaccharides from Bifidobacterium bifidum WBIN03 and Lactobacillus plantarum R315, Journal of Dairy Science, 97(12). 7334-7343. December 2014.
 
[14]  Shin, J.S., Jung, J.Y., Lee, S.G., Shin, K.S., Rhee, Y.K., Lee, M.K., Hong, H.D., Lee, K.T., Exopolysaccharide fraction from pediococcus pentosaceus KFT18 induces immunostimulatory activity in macrophages and immunosuppressed mice, Journal of Applied Microbiology, 120(5). 1390-1402. May 2016.
 
[15]  Zhang, T.H., Zhang, C.H., Li, S.Y., Zhang, Y.C., Yang, Z.N., Growth and exopolysaccharide production by streptococcus thermophilus ST1 in skim milk, Brazilian Journal of Microbiology, 42(4). 1470-1478. October-December 2011.
 
[16]  Liu C.F., Tseng K.C., Chiang S.S., Lee B.H., Hsu W.H., Pan T.M., Immunomodulatory and antioxidant potential of Lactobacillus exopolysaccharides, Journal of the Science of Food and Agriculture, 91(12), 2284-2291. May 2011.
 
[17]  Li J.Y., Jin M.M., Meng J., Gao S,M., Lu R.R., Exopolysaccharide from Lactobacillus planterum LP6: Antioxidation and the effect on oxidative stress, Carbohydrate Polymers, 98, 1147-1152. October 2013.
 
[18]  Guo, Y.X., Pan, D.D., Sun, Y.Y., Xin, L.Y., Li, H., Zeng, X.Q., Antioxidant activity of phosphorylated exopolysaccharide produced by Lactococcus lactis subsp. Lactis, Carbohydrate Polymers, 97(2). 849-854. September 2013.
 
[19]  Ruas-Madiedo P., Hugenholtz J., Zoon P., An overview of the functionality of exopolysaccharides produced by lactic acid bacteria, International Dairy Journal, 12(2-3), 163-171. 2002.
 
[20]  Gorska S., Jachymek W., Rybka J., Strus M., Heczko P.B., Gamian A., Structural and immunochemical studies of neutral exopolysaccharide produced by Lactobacillus johnsonii 142, Carbohydrate Research, 345(1), 108-114. January 2010.
 
[21]  Pan D.D., Mei X.M., Antioxidant activity of an exopolysaccharide purified from Lactococcus lactis subsp. lactis 12, Carbohydrate Polymers, 80(3), 908-914. May 2010.
 
[22]  Gorska S., Schwarzer M., Srutkova D., Hermanova P., Brzozowska E., Kozakova H., Gamian A., Polysaccharides L900/2 and L900/3 isolated from Lactobacillus rhamnosus LOCK 0900 modulate allergic sensitization to ovalbumin in a mouse model, Microbial Biotechnology, 10(3), 586-593. February 2017.
 
[23]  Deepak, V., Pandian, S.R.K., Sivasubramaniam, S.D., Nellaiah, H., Sundar, K., Optimization of anticancer exopolysaccharide production from probiotic Lactobacillus acidophilus by response surface methodology, Preparative Biochemistry & Biotechnology, 46(3), 288-297. 2016.
 
[24]  Desai, K.M., Akolkar, S.K., Badhe, Y.P., Tambe, S.S., Lele, S.S., Optimization of fermentation media for exopolysaccharide production from Lactobacillus plantarum using artificial intelligence-based techniques, Process Biochemistry, 41(8). 1842-1848. August 2006.
 
[25]  Hsieh, S.C., Liu, J.M., Pua, X.H., Ting ,Y.W., Hsu, R.J., Cheng, K.C., Optimization of Lactobacillus acidophilus cultivation using taro waste and evaluation of its biological activity, Applied Microbiology and Biotechnology, 100(6). 2629-2639. March 2016.
 
[26]  Zhang Y.L., Hu P., Wang J.L., Liao Q.W., Isolation of exopolysaccharides-producing lactic acid bacteria and its antioxidant properties, China Brewing, 34(10), 37-42. October 2015.
 
[27]  Zhang, C.H., Yun, Y.H., Fan, W., Liang, Y.Z., Yu, Y., Tang, W.X., Rapid analysis of polysaccharides contents in Glycyrrhiza by near infrared spectroscopy and chemometrics, International Journal of Biological Macromolecules, 79. 983-987. August 2015.
 
[28]  Choi, C.W., Kim, S.C., Hwang, S.S., Choi, B.K., Ahn, H.J., Lee, M.Y., Park, S.H., Kim, S.K., Antioxidant activity and free radical scavenging capacity between Korean medicinal plants and flavonoids by assay-guided comparison, Plant Science, 163(6). 1161-1168. December 2002.
 
[29]  Jindal, N., Singh, D.P., Khattar, J.I.S., Kinetics and physico-chemical characterization of exopolysaccharides produced by the cyanobacterium Oscillatoria Formosa, World Journal of Microbiology & Biotechnology, 27(9). 2139-2146. September 2011.
 
[30]  Wang, X., Shao, C.G., Liu, L., Guo, X., Xu, Y.M., Lv, X., Optimization, partial characterization and antioxidant activity of an exopolysaccharide from Lactobacillus plantarum KX041, International Journal of Biological Macromolecules, 103. 1173-1184. October 2017.
 
[31]  Imran, M.Y.M., Reehana, N., Jayaraj, K.A., Ahamed, A.A.P., Dhanasekaran, D., Thajuddin, N., Alharbi, N.S., Muralitharan, G., Statistical optimization of exopolysaccharide production by Lactobacillus plantarum NTMI05 and NTMI20, International Journal of Biological Macromolecules, 93. 731-745. December 2016.
 
[32]  Cerning, J., Bouillanne, C., Landon, M., Desmazeaud, M., Isolation and Characterization of Exopolysaccharides from Slime-Forming Mesophilic Lactic Acid Bacteria, Journal of Dairy Science, 75(3). 692-699. March 1992.
 
[33]  Tao, J., Xu, S.X., Meng, D.J., Zhang, X.D., Su, Z., Zong, W., The conditions optimization of Lactobacillus exopolysaccharides from fermentation, The Food Industry, 38(1). 28-31. January 2017.
 
[34]  Ibarburu, I., Puertas, A.I., Berregi, I., Rodriguez-Carvajal, M.A., Prieto, A., Duenas, M.T., Production and partial characterization of exopolysaccharides produced by two Lactobacillus suebicus strains isolated from cider, International Journal of Food Microbiology, 214. 54-62. December 2015.
 
[35]  Wang, C.L., Huang, T.H., Liang, T.W., Fang, C.Y., Wang, S.L., Production and characterization of exopolysaccharides and antioxidant from Paenibacillus sp. TKU023, New Biotechnology, 28(6). 559-565. October 2011.