Journal of Food and Nutrition Research
ISSN (Print): 2333-1119 ISSN (Online): 2333-1240 Website: Editor-in-chief: Prabhat Kumar Mandal
Open Access
Journal Browser
Journal of Food and Nutrition Research. 2017, 5(11), 844-851
DOI: 10.12691/jfnr-5-11-8
Open AccessArticle

Bioactive and Volatile Compounds in Sweet Cherry Cultivars

P. Legua1, , A. Domenech1, J.J. Martínez1, L. Sánchez-Rodríguez.2, F. Hernández1, A.A. Carbonell-Barrachina2 and P. Melgarejo1

1Plant Science and Microbiology Department, Escuela Politécnica Superior de Orihuela, Miguel Hernández Universitas, Research group “Plant Production and Technology”. Ctra. Beniel, km 3.2, 03312 Orihuela, Alicante, Spain

2Agro-Food Technology Department, Escuela Politécnica Superior de Orihuela, Miguel Hernández Universitas, Research group “Food Quality and Safety”. Ctra. Beniel, km 3.2, 03312 Orihuela, Alicante, Spain

Pub. Date: November 09, 2017

Cite this paper:
P. Legua, A. Domenech, J.J. Martínez, L. Sánchez-Rodríguez., F. Hernández, A.A. Carbonell-Barrachina and P. Melgarejo. Bioactive and Volatile Compounds in Sweet Cherry Cultivars. Journal of Food and Nutrition Research. 2017; 5(11):844-851. doi: 10.12691/jfnr-5-11-8


The organoleptic and nutritive quality of sweet cherry is largely influenced by the genotype. Phenolic compounds, antioxidant activity, organic acids, sugars and volatile compounds of seven sweet cherry cultivars (Lory, Burlat, Brooks, Summit, Prime Giant, Van, and 57) grown in Alicante (Spain) were evaluated. The most important organic acid was malic acid and fructose and glucose were found in greater quantity in the sweet cherry cultivars. The cultivars with the highest antioxidant activity were Burlat and Brooks, very important from a health point of view. Regarding volatile compounds thirty one were isolated having Van the highest contents. 57, and Burlat sweet cherry genotypes were the most interesting with respect to “health benefits”. However, if the most important factor is “organoleptic quality” (combination of dark red colour and intense flavor), our recommendations are Van, 57, and Prime Giant.

antioxidant activity aroma colour organic acids phenolics

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


[1]  Gonçalves, B., Moutinho-Pereira, J., Santos, A., Silva, A.P., Bacelar, E., Correira, C., & Rosa, E. (2006). Scion-rootstock interaction affects the physiology and fruit quality of sweet cherry. Tree Physiology, 26, 93-104.
[2]  Serrano, M., Guillen, F., Martínez-Romero, D., Castillo, S., & Valero, D. (2005). Chemical constituyents and antioxidant activity of sweet cherry at different ripening stages. Journal of Agricultural and Food Chemistry, 53, 2741-2745.
[3]  Crisosto, C.H., Crisosto, G.M., & Metheney, P. (2003). Consumer acceptance of “Brooks” and “Bing” cherries is mainly dependent on fruit SSC and visual skin colour. Postharvest Biology and Technology, 28, 159-167.
[4]  Wang, H., Cao, G., & Prior, R.L. (1997). Oxygen radical absorbing capacity of anthocyanins. Journal of Agricultural and Food Chemistry, 45, 304-309.
[5]  Esti, M., Cinquanta, L., Sinesio, F., Moneta, E., & Di Matteo, M. (2002). Physicochemical and sensory fruit characteristics of two sweet cherry cultivars alter cool storage. Food Chemistry, 76, 399-405.
[6]  Gao, L., & Mazza, G. (1995). Characterization, quantitation and distribution of anthocyanins and colourless phenolics in sweet cherries. Journal of Agricultural and Food Chemistry, 43, 343-346.
[7]  Gonçalves, B., Landbo, A.K., Knudsen, D., Silva, A.P., Moutinho-Pereira, J., & Rosa, E. (2004). Effect of ripeness and postharvest storage on the phenolic profiles of cherries (Prunus avium L.). Journal of Agricultural and Food Chemistry, 52, 523-530.
[8]  Kim, D.O., Heo, H.J., Kim, Y.J., Yang, H.S., & Lee, C.Y. (2005). Sweet and sour cherry phenolics and their protective effects on neuronal cells. Journal of Agricultural and Food Chemistry, 53, 9921-9927.
[9]  Mozetic, B., Simcic, M., & Trebse, P. (2006). Anthocyanins and hydroxycinnamic acids of Lambert Compact cherries (Prunus avium L.) after cold storage and 1-methylcyclopropene treatment. Food Chemistry, 97, 302-309.
[10]  Kang, S.Y., Seeram, N.P., Nair, M.G., & Bourquin, L.D. (2003). Tart cherry anthocyanins inhibit tumor development in ApcMin mice and reduce proliferation of human colon cancer cells. Cancer Letters, 194, 13-19.
[11]  Vázquez-Araújo, L., Koppel, K., Chambers IV, E., Adhikari, K., & Carbonell-Barrachina, A.A. (2011). Instrumental and sensory aroma profile of pomegranate juices from the USA: differences between fresh and commercial juice. Flavour and Fragance Journal, 26, 129-138.
[12]  Melgarejo, P., Calín-Sánchez, A., Carbonell-Barrachina, A.A., Martínez-Nicolás, J.J., Legua, P., Martínez, R., & Hernández, F. (2009). Antioxidant activity, volatile composition and sensory profile of four new very-early apricots (Prunus armeniaca L.). Journal of the Science of Food and Agricuture, 94, 85-94.
[13]  Dever, M.C., MacDonald, R.A., Cliff, M.A., & Lane, W.D. (1996). Sensory evaluation of sweet cherry cultivars. HortScience, 31, 150-153.
[14]  Cliff, M.A., Dever, M.C., Haal, J.W., & Girard, B. (1996). Development and evaluation of multiple regression models for prediction of sweet cherry liking. Food Research International, 28, 583-589.
[15]  Hernández, F., Noguera-Artiaga, L., Burló, F., Wojdylo, A., Carbonell-Barrachina, A.A., & Legua, P. (2015). Physico-chemical, nutritional, and volatile composition and sensory profile of Spanish jujube (Ziziphus jujuba Mill.) fruits. Journal of the Science of Food and Agricuture, 96, 2682-2691.
[16]  Vázquez-Araújo, L., Verdú, A., & Carbonell-Barrachina, A.A. (2008). Aroma volatiles of ‘a la Piedra’ Turrón. Flavour and Fragance Journal, 23(2), 84-92.
[17]  McLafferty, F., 2000. Wiley Registry of Mass Spectral Data, VIIth ed. John Wiley & Sons Inc., New York, USA.
[18]  Singleton, V.L., Orthofer, R., & Lamuela-Reventos, R.M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods in Enzymology, 299, 152-178.
[19]  Girard, B., & Kopp, T.G. (1998). Physicochemical characteristics of selected sweet cherry cultivars. Journal of Agricultural and Food Chemistry, 46, 471-476.
[20]  Usenik, V., Fabcic, J., & Stampar, F. (2008). Sugars, organic acids, phenolic composition and antioxidant activity of sweet cherry (Prunus avium L.). Food Chemistry, 107, 185-192.
[21]  Usenik, V., Fajt, N., Mikulic-Petkovsek, M., Slatnar, A., Stampar, F., & Veberic, R. (2010). Sweet cherry pomological and biochemical characteristics influenced by rootstock. Journal of Agricultural and Food Chemistry, 58, 4928-4933.
[22]  Ballistreri, G., Continella, A., Gentile, A., Amenta, M., Fabroni, S., & Rapisarda, P. (2013). Fruit quality and bioactive compounds relevant to human health of sweet cherry (Prunus avium L.) cultivars grown in Italy. Food Chemistry, 140, 630-638.
[23]  Sturm, K., & Stampar, F. (1998). Determining the quality of different cherry cultivars using the HPLC method. Acta Horticulturae, 468, 705-712.
[24]  Vangdal, E., & Slimestad, R. (2006). Methods to determined antioxidative capacity in fruit. Journal of Fruit and Ornamental Plant Research, 14, 123-131.
[25]  Halvonsen, B.L., Holte, K., Myhrstad, M.C.W., Barikmo, I., Hvattum, E., & Remberg, S.F. (2002). A systematic screening of total antioxidants in dietary plants. Journal of Nutrition, 132, 461-471.
[26]  Valero, D., Díaz-Mula, H.M., Zapata, P.J., Castillo, S., Guillén, F., Martínez-Romero, D., & Serrano, M. (2011). Postharvest treatments with salicylic acid, acetylsalicylic acido or oxalic acid delayed ripening and enhanced bioactive compounds and antioxidant capacity in sweet cherry. Journal of Agricultural and Food Chemistry 59, 5483-5489.
[27]  Tomás-Barberán, F.A., & Espín, J.C. (2001). Phenolic compounds and related enzymes as determinants of quality in fruits and vegetables. Journal of the Science of Food and Agriculture, 81, 853-876.
[28]  Melgarejo, P., Calín-Sanchez, Á., Vázquez-Araújo, L., Hernández, F., Martínez, J.J., Legua, P., & Carbonell-Barrachina, A.A. (2011). Volatile composition of pomegranates from 9 Spanish cultivars using head space-solid phase microextraction. Journal of Food Science, 76(1), 144-120.
[29]  Alonso, A., Vázquez-Araújo, L., García-Martínez, S., Ruiz, J.J., & Carbonell-Barrachina, A.A. (2009). Volatile compounds of traditional and virus-resistant breeding lines of Muchamiel tomatoes. European Food Research Technology, 230, 315-323.
[30]  Vavoura, M.V., Badeka, A.V., Kontakos, S., & Kontominas, M.G. (2015). Characterization of four popular sweet cherry cultivars grown in Greece by volatile compounds and physicochemical data analysis and sensory evaluation. Molecules, 20, 1922-1940.
[31]  Serradilla, M.J., Martín, A., Ruiz-Moyano, S., Hernández, A., López-Corrales, M., & de Guía-Córdoba, M. (2012). Physicochemical and sensorial characterisation of four sweet cherry cultivars grown in Jerte Valley (Spain). Food Chemistry, 133, 1551-1559.
[32]  SAFC (Sigma-Aldrich Flavors & Fragances) (2012). Catalogue of Flavors & Fragrances. Sigma-Aldrich®, St. Louis, MO (USA).
[33]  Zhang, X., Jiang, Y.M., Peng, F.T., He, N.B., Li, Y.J., & Zhao, D.C. (2007). Changes of aroma components in Hongdeng sweet cherry during fruit development. Agricultural Sciences in China, 6(11), 1376-1382.
[34]  Croteau, R. (1978). Biosynthesis of benzaldehyde, benzyl alcohol and benzyl benzoate from benzoic acid in cranberry (Vaccinium macrocarpon). Journal of Food Biochemistry, 1, 317-326.