Journal of Food and Nutrition Research
ISSN (Print): 2333-1119 ISSN (Online): 2333-1240 Website: http://www.sciepub.com/journal/jfnr Editor-in-chief: Prabhat Kumar Mandal
Open Access
Journal Browser
Go
Journal of Food and Nutrition Research. 2017, 5(11), 801-808
DOI: 10.12691/jfnr-5-11-2
Open AccessArticle

Valorization Strategy of Banana Passion Fruit Shell Wastes: An Innovative Source of Phytoprostanes and Phenolic Compounds and Their Potential Use in Pharmaceutical and Cosmetic Industries

Sonia Medina1, 2, Jacinta Collado-González1, Federico Ferreres1, Julián Londoño-Londoño2, , Claudio Jiménez-Cartagena2, Alexandre Guy3, Thierry Durand3, Jean-Marie Galano3 and Angel Gil-Izquierdo1,

1Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS (CSIC), Espinardo, Murcia, Spain

2Faculty of Engineering, Food Engineering Program, Corporación Universitaria Lasallista, Caldas-Antioquia, Colombia

3Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, University of Montpellier, ENSCM, Montpellier, France

Pub. Date: October 23, 2017

Cite this paper:
Sonia Medina, Jacinta Collado-González, Federico Ferreres, Julián Londoño-Londoño, Claudio Jiménez-Cartagena, Alexandre Guy, Thierry Durand, Jean-Marie Galano and Angel Gil-Izquierdo. Valorization Strategy of Banana Passion Fruit Shell Wastes: An Innovative Source of Phytoprostanes and Phenolic Compounds and Their Potential Use in Pharmaceutical and Cosmetic Industries. Journal of Food and Nutrition Research. 2017; 5(11):801-808. doi: 10.12691/jfnr-5-11-2

Abstract

At present, people with today's busy lifestyle have a general trend of consuming fruit like banana passion fruit (Passiflora tripartita var. mollisima) as juices or smoothies, being an increasing tendency that can generate a large amount of agro-industrial residues. Whereby, food industries have a significant investment to minimize these wastes generated or devise alternatives of residue use. So, food researches are aimed to exploit these fruit waste. In this sense, this study has allowed the detection for the first time, in banana passion fruit shell, phytoprostanes (PhytoPs), oxylipins with multiple biological activities in humans. Furthermore, this study, with methodology used (LC-MS) allowed us to detect higher amount of these compounds (2318.63 ± 71.51 µg/100 g DW) than other vegetable matrices previously studied (macroalgae, olives or almonds, among others). In addition, we were able to identify 14 phenolic compounds (including cinnamoyl acid derivatives, flavonoid-O-glycoside, flavonoid-C-glycosides), not previously described in this matrix. Hence, this work increased the knowledge about the bioactive compounds profile of banana passion fruit shells and thereby to achieve a product with added value that may be used as natural source of bioactive compounds as alternative of synthetic substances in several industries of pharmaceutic or cosmetic fields.

Keywords:
Passiflora tripartita var. mollissima fruit shells agro-industries wastes food analysis phytoprostanes polyphenols

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Figures

Figure of 3

References:

[1]  Chaparro R DC, Maldonado C ME, Franco L MC, Urango M LA (2015). Características nutricionales y antioxidantes de la fruta curuba larga (Passiflora mollisima Bailey). Biotecnología en el Sector Agropecuario y Agroindustrial 13: 120-128.
 
[2]  O'Shea N, Arendt EK, Gallagher E (2012). Dietary fibre and phytochemical characteristics of fruit and vegetable by-products and their recent applications as novel ingredients in food products. Innovative. Food Science & Emerging Technologies 16: 1-10.
 
[3]  Lima H, Corrêa NCF, Santos O, de Fátima Henriques Lourenço L (2015). Use of agroindustrial wastes (açai fiber and glycerol) in the preparation of cookies. Journal of Food Science and Technology 52: 4593-4599.
 
[4]  Yepes SM, Montoya Naranjo LJ, Orozco Sánchez F (2008). Valorización de residuos agroindustriales - frutas - en Medellín y el Sur del valle del Aburrá, Colombia. Revista Facultad Nacional de Agronomía, Medellín. 61: 4422-4431.
 
[5]  Działo M, Mierziak J, Korzun U, Preisner M, Szopa J, Kulma A (2016). The Potential of Plant Phenolics in Prevention and Therapy of Skin Disorders. International Journal of Molecular Sciences 17: 160.
 
[6]  Tomás-Barberán FA, Gil MI (2008). Improving the Health-Promoting Properties of Fruit and Vegetable Products. Elsevier Science.
 
[7]  Peschel, W., Sánchez-Rabaneda, F., Diekmann, W., Plescher, A., Gartzía, I., Jiménez, D., Lamuela-Raventós, R., Buxaderas, S., Codina, C, "An industrial approach in the search of natural antioxidants from vegetable and fruit wastes", Food Chemistry, 97 (1). 137-150. July 2006.
 
[8]  Collado-González J, Durand T, Ferreres F, Medina S, Torrecillas A, Gil-Izquierdo Á (2015). Phytoprostanes. Lipid Technology 27: 127-130.
 
[9]  Durand, Bultel-Ponce V, Guy A, Berger S, Mueller MJ, Galano JM (2009). New bioactive oxylipins formed by non-enzymatic free-radical-catalyzed pathways: the phytoprostanes. Lipids 44: 875-888.
 
[10]  Durand, Bultel-Poncé V, Guy A, El Fangour S, Rossi JC, Galano JM (2011). Isoprostanes and phytoprostanes: Bioactive lipids. Biochimie 93: 52-60.
 
[11]  Thoma I, Krischke M, Loeffler C, Mueller MJ (2004). The isoprostanoid pathway in plants. Chemistry and Physics of Lipids 128: 135-148.
 
[12]  Barden AE, Croft KD, Durand T, Guy A, Mueller MJ, Mori TA (2009). Flaxseed oil supplementation increases plasma F1-phytoprostanes in healthy men. Journal of Nutrition 139: 1890-1895.
 
[13]  Gilles S, Mariani V, Bryce M, Mueller MJ, Ring J, Jakob T, Pastore S, Behrendt H, Traidl-Hoffmann C (2009). Pollen-derived E1-phytoprostanes signal via PPAR-γ and NF-κB-dependent mechanisms. The Journal of Immunology 182: 6653-6658.
 
[14]  Minghetti L, Salvi R, Lavinia Salvatori M, Antonietta Ajmone-Cat M, De Nuccio C, Visentin S, Bultel-Poncé V, Oger C, Guy A, Galano J-M, Greco A, Bernardo A, Durand T (2014). Nonenzymatic oxygenated metabolites of α-linolenic acid B1- and L1-phytoprostanes protect immature neurons from oxidant injury and promote differentiation of oligodendrocyte progenitors through PPAR-γ activation. Free Radical Biology and Medicine 73: 41-50.
 
[15]  Carrasco del Amor, Collado-Gonzalez J, Aguayo E, Guy A, Galano JM, Durand T, Gil-Izquierdo A (2015). Phytoprostanes in almonds: identification, quantification, and impact of cultivar and type of cultivation. RSC Advances 5: 51233-51241.
 
[16]  Collado-González J, Medina S, Durand T, Guy A, Galano J-M, Torrecillas A, Ferreres F, Gil-Izquierdo A (2015). New UHPLC–QqQ-MS/MS method for quantitative and qualitative determination of free phytoprostanes in foodstuffs of commercial olive and sunflower oils. Food Chemistry 178: 212-220.
 
[17]  Collado-González J, Moriana A, Girón IF, Corell M, Medina S, Durand T, Guy A, Galano J-M, Valero E, Garrigues T, Ferreres, F, Moreno F, Torrecillas A, Gil-Izquiero, A (2015). The phytoprostane content in green table olives is influenced by Spanish-style processing and regulated deficit irrigation. LWT - Food Science and Technology 2015, 64: 997-1003.
 
[18]  Collado-Gonzalez J, Perez-Lopez D, Memmi H, Gijon MC, Medina S, Durand T, Guy A, Galano JM, Ferreres F, Torrecillas A, Gil-Izquierdo A (2015). Water deficit during pit hardening enhances phytoprostanes content, a plant biomarker of oxidative stress, in extra virgin olive oil. Journal of Agricultural and Food Chemistry 63: 3784-3792.
 
[19]  Marhuenda J, Medina S, Diaz-Castro A, Martinez-Hernandez P, Arina S, Zafrilla P, Mulero J, Oger C, Galano JM, Durand T, Mulero J, Oger C, Galano JM, Durand T, Ferreres F, Gil-Izquierdo A (2015). Dependency of Phytoprostane Fingerprints of Must and Wine on Viticulture and Enological Processes. Journal of Agricultural and Food Chemistry 63: 9022-9028.
 
[20]  Durand, Guy A, Henry O, Roland A, Bernad S, Fangour S, Vidal JP, Rossi JC (2004). Total syntheses of iso-, neuro- and phytoprostanes: new insight in lipid chemistry. Chemistry and Physics of Lipids 128: 15-33.
 
[21]  El Fangour S, Guy A, Despres V, Vidal JP, Rossi JC, Durand T(2004). Total synthesis of the eight diastereomers of the syn-anti-syn phytoprostanes F1 types I and II. The Journal of Organic Chemistry 69: 2498-2503.
 
[22]  El Fangour S, Guy A, Vidal JP, Rossi JC, Durand T (2005). A flexible synthesis of the phytoprostanes B1 type I and II. The Journal of Organic Chemistry 70: 989-997.
 
[23]  Barbosa M, Collado-Gonzalez J, Andrade PB, Ferreres F, Valentao P, Galano JM, Durand T, Gil-Izquierdo A (2015). Nonenzymatic alpha-linolenic acid derivatives from the sea: macroalgae as novel sources of phytoprostanes. Journal of Agricultural and Food Chemistry 63: 6466-6474.
 
[24]  Herraiz FJ, Villano D, Plazas M, Vilanova S, Ferreres F, Prohens J, Moreno DA (2016). Phenolic profile and biological activities of the pepino (Solanum muricatum) fruit and its wild relative S. caripense. International Journal of Molecular Science 17: 394.
 
[25]  Sanchez-Rodriguez E, Ruiz JM, Ferreres F, Moreno DA (2012). Phenolic profiles of cherry tomatoes as influenced by hydric stress and rootstock technique. Food Chemistry 134: 775-782.
 
[26]  Ferreres, Grosso C, Gil-Izquierdo A, Valentão P, Azevedo C, Andrade PB (2014). HPLC-DAD-ESI/MSn analysis of phenolic compounds for quality control of Grindelia robusta Nutt. and bioactivities. Journal of Pharmaceutical and Biomedical Analysis 94: 163-172.
 
[27]  Medina S, Collado-González J, Ferreres F, Londoño-Londoño J, Jiménez-Cartagena C, Guy A, Durand T, Galano J-M, Gil-Izquierdo A (2017). Quantification of phytoprostanes–bioactive oxylipins–and phenolic compounds of Passiflora edulis Sims shell using UHPLC-QqQ-MS/MS and LC-IT-DAD-MS/MS. Food Chemistry 229: 1-8.
 
[28]  Imbusch R, Mueller MJ (2000). Formation of isoprostane F2-like compounds (phytoprostanes F1) from α-linolenic acid in plants. Free Radical Biology and Medicine 28: 720-726.
 
[29]  Karg K, Dirsch VM, Vollmar AM, Cracowski JL, Laporte F, Mueller MJ (2007). Biologically active oxidized lipids (phytoprostanes) in the plant diet and parenteral lipid nutrition. Free Radical Research 41: 25-37.
 
[30]  Parchmann S, Mueller MJ (1998). Evidence for the formation of dinor isoprostanes E1 from alpha-linolenic acid in plants. The Journal of Biological Chemistry 273: 32650-32655.
 
[31]  Carrasco-Del Amor AM, Aguayo E, Collado-González J, Guy A, Galano JM, Durand T, Gil-Izquierdo A (2016). Impact of packaging atmosphere, storage and processing conditions on the generation of phytoprostanes as quality processing compounds in almond kernels. Food Chemistry 211: 869-875.
 
[32]  Cheok CY, Adzahan NM, Rahman RA, Abedin NH, Hussain N, Sulaiman R, Chong GH (2017). Current trends of tropical fruit waste utilization. Critical Reviews in Food Science and Nutrition 1-27.
 
[33]  Costa GM, Gazola AC, Zucolotto SM, Castellanos L, Ramos FA, Reginatto FH, Schenkel EP (2016). Chemical profiles of traditional preparations of four South American Passiflora species by chromatographic and capillary electrophoretic techniques. Revista Brasileira de Farmacognosia 26: 451-458.
 
[34]  Cuyckens F, Ma Y, L., Pocsfalvi G, Claeysi M (2000). Tandem mass spectral strategies for the structural characterization of flavonoid glycosides. Analusis 28: 888-895.
 
[35]  Ferreres, Llorach R, Gil-Izquierdo A (2004). Characterization of the interglycosidic linkage in di-, tri-, tetra- and pentaglycosylated flavonoids and differentiation of positional isomers by liquid chromatography/electrospray ionization tandem mass spectrometry. Journal of Mass Spectrometry 39: 312-321.
 
[36]  Simirgiotis MJ, Schmeda-Hirschmann G, Bórquez J, Kennelly EJ (2013). The Passiflora tripartita (banana passion) fruit: a source of bioactive flavonoid C-glycosides isolated by HSCCC and characterized by HPLC–DAD–ESI/MS/MS. Molecules 18: 1672-1692.
 
[37]  Zucolotto SM, Fagundes C, Reginatto FH, Ramos FA, Castellanos L, Duque C, Schenkel EP (2012). Analysis of C-glycosyl flavonoids from South American Passiflora species by HPLC-DAD and HPLC-MS. Phytochemical Analysis 23: 232-239.
 
[38]  Ferreres, Silva BM, Andrade PB, Seabra RM, Ferreira MA (2003). Approach to the study of C-glycosyl flavones by ion trap HPLC-PAD-ESI/MS/MS: application to seeds of quince (Cydonia oblonga). Phytochemical Analysis 14: 352-359.
 
[39]  Ferreres, Gil-Izquierdo A, Andrade PB, Valentao P, Tomas-Barberan FA (2007). Characterization of C-glycosyl flavones O-glycosylated by liquid chromatography-tandem mass spectrometry. Journal of Chromatography A 1161: 214-223.