Journal of Food and Nutrition Research
ISSN (Print): 2333-1119 ISSN (Online): 2333-1240 Website: Editor-in-chief: Prabhat Kumar Mandal
Open Access
Journal Browser
Journal of Food and Nutrition Research. 2017, 5(10), 742-749
DOI: 10.12691/jfnr-5-10-4
Open AccessArticle

Cellular Antioxidant and Antiproliferative Activities of Morchella conica Pers. Polyphenols in vitro

Xia Liao1, Fuhua Li1, Yurong Tan1, Keke Lu1, Surui Wu2, Ran Yin3 and Jian Ming1, 4,

1College of Food Science, Southwest University, Chongqing, P. R. China

2Kunming Edible Fungi Institute, All China Federation of Supply and Marketing Cooperatives, Kunming, P. R. China

3Ernest Mario School of Pharmacy, Rutgers University, 160 Frelinghuysen Rd, Piscataway Township, NJ, USA

4Chongqing Engineering Research Center for Special Foods, Chongqing, P. R. China

Pub. Date: September 21, 2017

Cite this paper:
Xia Liao, Fuhua Li, Yurong Tan, Keke Lu, Surui Wu, Ran Yin and Jian Ming. Cellular Antioxidant and Antiproliferative Activities of Morchella conica Pers. Polyphenols in vitro. Journal of Food and Nutrition Research. 2017; 5(10):742-749. doi: 10.12691/jfnr-5-10-4


This study analyzed the cellular antioxidant and antiproliferative activities, as well as the phenolic composition of three Morchella conica Pers. cultures. Results showed that the free phenolic contents of the three Morchella conica Pers. ranged from 4.928 to 6.157 mg GAE/g DW and their bound phenolic contents ranged from 0.188 to 0.250 mg GAE/g DW. Polyphenols in M. conica Pers. were dominated by phenolic acids, particularly for gallic acid. The free phenolic extracts exhibited higher cellular antioxidant activity than the bound phenolic extracts. Free phenolics in M. conica Pers. cultured from Yunnan China showed the highest antiproliferative activity against HepG2 cells, whereas bound phenolics in M. conica cultured from Tibet China showed the highest antiproliferative activity. Results confirmed that Morchella conica Pers. (growing in Yunnan China especially) could be a new source of natural antioxidant and a potential inhibitor for the growth of HepG2 cells.

Morchella conica Pers. polyphenols antioxidation antiproliferation

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


Figure of 2


[1]  Liu, B., Wu, S. R., Zhu, P., Zhang, L.Y., Tai, L. M., & Gui, M. Y. (2012). Nutrient analysis of morel in northwest Yunnan Province. Science and Technology of Food Industry, 33(1), 363-365.
[2]  Kalaras, M. D., Richie, J. P., Calcagnotto, A., & Beelman, R. B. (2017). Mushrooms: A rich source of the antioxidants ergothioneine and glutathione. Food Chemistry, 233, 429-433.
[3]  Ramírez-Anguiano, A. C., Santoyo, S., Reglero, G., & Soler-Rivas, C. (2010). Radical scavenging activities, endogenous oxidative enzymes and total phenols in edible mushrooms commonly consumed in Europe. Journal of the Science of Food and Agriculture, 87(12), 2272-2278.
[4]  Yildiz, O., Can, Z., Laghari, A. Q., & Şahin H., Malkoç M. (2015). Wild edible mushrooms as a natural source of phenolics and antioxidants. Journal of Food Biochemistry, 39(2), 148-154.
[5]  Xiong, C., Li, Q., Chen, C., Chen, Z. Q., & Huang, W. L. (2016). Neuroprotective effect of crude polysaccharide isolated from the fruiting bodies of Morchella importuna against H2O2-induced PC12 cell cytotoxicity by reducing oxidative stress. Biomedicine and Pharmacotherapy, 83, 569-576.
[6]  Meng, F., Zhou, B., Lin, R., Jia, L,. Liu, X. N., Deng, P., Fan, K. M., Wang, G. Y., Wang, L,. & Zhang, J. J. (2010). Extraction optimization and in vivo antioxidant activities of exopolysaccharide by Morchella esculenta SO-01. Bioresource Technology, 101(12), 4564-4569.
[7]  Badshah, H., Ullah, F., Khan, M. U., Mumtaz, A. S. & Malik , R. N. (2015). Pharmacological activities of selected wild mushrooms in South Waziristan (FATA), Pakistan. South African Journal of Botany, 97, 107-110.
[8]  Gursoy, N., Sarikurkcu, C., Cengiz, M., & Solak, M. H. (2009). Antioxidant activities, metal contents, total phenolics and flavonoids of seven Morchella species. Food and Chemistry Toxicology, 47(9), 2381-2388.
[9]  Vieira V., Fernandes Â., Barros L., Glamočlija J., Ćirić A., Stojković D., Martins A., Soković M., & Ferreira I. C. (2016). Wild Morchella conica Pers. from different origins: a comparative study of nutritional and bioactive properties. Journal of Science of Food and Agriculture, 96 (1), 90-98.
[10]  Turkoglu, A., Kivrak, I., Mercan, N., Duru, M., Gezer, K., & Turkoglu, H. (2006). Antioxidant and antimicrobial activities of Morchella conica Pers. African Journal of Biotechnology, 5(11), 1146-1150.
[11]  Liu, K., Xiao, X., Wang, J., Chen, C-Y. O., & Hu, H. (2017). Polyphenolic composition and antioxidant, antiproliferative, and antimicrobial activities of mushroom Inonotus sanghuang. LWT - Food Science and Technology, 82, 154-161.
[12]  Souilem, F., Fernandes, Â., Calhelha, R. C., Barreira, J. C. M., Barros, L., Skhiri, F., Martins, A., & Ferreira, I. C. F. R. (2017). Wild mushrooms and their mycelia as sources of bioactive compounds: Antioxidant, anti-inflammatory and cytotoxic properties. Food Chemistry, 230, 40-48.
[13]  Nitha, B., Fijesh, P. V., & Janardhanan, K. K. (2013). Hepatoprotective activity of cultured mycelium of Morel mushroom, Morchella esculenta. Experimental and Toxicologic Pathology, 65(1-2), 105-112.
[14]  Heleno, S. A., Barros, L., Martins, A., Queiroz, M. J. R. P., Santos-Buelga, C., & Ferreira, I. C. F. R. (2012). Fruiting body, spores and in vitro produced mycelium of Ganoderma lucidum from Northeast Portugal: A comparative study of the antioxidant potential of phenolic and polysaccharidic extracts. Food Research International, 46(1), 135-140.
[15]  Wu, D. M., Xu, W. T., Xie, Z. M., Luo, Y. B., & Li, Q. S. (2013). Present status and prospect of wild Morchella in Xinjiang. Science and Technology of Food Industry, 34(1), 381-384.
[16]  Yang, M. (2014). Study on sustainable development of Tibetan edible fungi. (Master dissertation, Huazhong Agricultural University).
[17]  Yang, M., & Jin, Q. (2014). Study on sustainable development of Tibetan edible fungi - Based on fuzzy comprehensive evaluation method. Guangdong Agricultural Sciences, 22, 18-23,34.
[18]  He, P., Cai, Y., Liu, S., Han, Li., Huang, L., & Liu, W. (2015). Morphological and ultrastructural examination of senescence in Morchella elata. Micron, 78, 79-84.
[19]  He, P., Wang, K., Cai, Y., & Liu, W. (2017). Live cell confocal laser imaging studies on the nuclear behavior during meiosis and ascosporogenesis in Morchella importuna under artificial cultivation. Micron, 101, 108-113.
[20]  Okarter, N., Liu, C. S., Sorrells, M. E., & Liu, R. H. (2010). Phytochemical content and antioxidant activity of six diverse varieties of whole wheat. Food Chemistry, 119(1), 249-257.
[21]  Chu, Y. F., Sun, J., Wu, X. Z., & Liu, R. H. (2002). Antioxidant and antiproliferative activities of common vegetables. Journal of Agriculture and Food Chemistry, 50(23), 6910-6916.
[22]  Liang, Q., Cui, J., Li, H., Liu, J., & Zhao, G. H. (2013). Florets of Sunflower (Helianthus annuus L.): Potential new sources of dietary fiber and phenolic acids. Journal of Agriculture and Food Chemistry, 61(14), 3435-3442.
[23]  Liu, R. H., Jacob, J. R., Tennant, B. C., & Hotchkiss, J. H. (1992). Nitrite and nitrosamine synthesis by hepatocytes isolated from normal woodchucks (Marmota monax) and woodchucks chronically infected with woodchuck hepatitis virus. Cancer Research, 52(15), 4139-4143.
[24]  Liu, R. H., Jacob, J. R., Hotchkiss, J. H., Cote, P. J., Gerin, J. L., & Tennant, B. C. (1994). Woodchuck hepatitis virus surface antigen induces nitric oxide synthesis in hepatocytes: possible role in hepatocarcinogenesis. Carcinogenesis, 15(12), 2875-2877.
[25]  Wolfe, K. L., & Liu, R. H. (2007). Cellular antioxidant activity (CAA) assay for assessing antioxidants, foods, and dietary supplements. Journal of Agriculture and Food Chemistry, 55(22), 8896-8907.
[26]  Yoon, H., & Liu, R. H. (2008). Effect of 2α-hydroxyursolic acid on NF-κB activation induced by TNF-α in human breast cancer MCF-7 cells. Journal of Agriculture and Food Chemistry, 56(18), 8412-8417.
[27]  Yang, J., Liu, R. H., & Halim, L. (2009). Antioxidant and antiproliferative activities of common edible nut seeds. LWT-Food Science and Technology, 42(1), 1-8.
[28]  Choi, Y., Lee, S. M., Chun, J., Lee, H. B., & Lee, J. (2006). Influence of heat treatment on the antioxidant activities and polyphenolic compounds of Shiitake (Lentinus edodes) mushroom. Food Chemistry, 99(2), 381-387.
[29]  Yuan, Y., Xu, J. N., Zhang, J. F., Yang, X. L., Xia, C. Y., & Ming, J. (2014). Effects of different culture media on nutritional composition, polyphenol contents and antioxidant activity of pleurotus ostreatus. Food Science, 35(13), 137-142.
[30]  Robaszkiewicz, A., Bartosz, G., Ławrynowicz, M., & Soszyński, M. (2010). The role of polyphenols, β-carotene, and lycopene in the antioxidative action of the extracts of dried, edible mushrooms. Journal of nutrition and metabolism, 2010, 173274.
[31]  Barros, L., Ferreira, M. J., Queiros, B., Ferreira, I. C. F. R., & Baptista, P. (2007). Total phenols, ascorbic acid, β-carotene and lycopene in Portuguese wild edible mushrooms and their antioxidant activities. Food Chemistry, 103(2), 413-419.
[32]  Dubost, N. J., Ou, B., Beelman, & R. B. (2007). Quantification of polyphenols and ergothioneine in cultivated mushrooms and correlation to total antioxidant capacity. Food Chemistry, 105(2), 727-735.
[33]  Palacios, I., Lozano, M., Moro, C., D’Arrigo, M., Rostagno, M. A., Martínez, J. A., García-Lafuente, A., Guillamón, E., & Villares, A. (2011). Antioxidant properties of phenolic compounds occurring in edible mushrooms. Food Chemistry, 128(3), 674-678.
[34]  Xi, Y., Fan, X. G., Zhao, H. D., Li, X. H., Cao, J. K., & Jiang W. B. (2017). Postharvest fruit quality and antioxidants of nectarine fruit as influenced by chlorogenic acid. LWT - Food Science and Technology, 75, 537-544.
[35]  Farhoosh, R., Johnny, S., Asnaashari, M., Molaahmadibahraseman, N., & Sharif, A. (2016). Structure-antioxidant activity relationships of o-hydroxyl, o-methoxy, and alkyl ester derivatives of p-hydroxybenzoic acid. Food Chemistry, 194, 128-134.
[36]  Zhang, J., Li, D. M., Sun, W. J., Wang, X. J., & Bai, J. G. (2012). Exogenous p-hydroxybenzoic acid regulates antioxidant enzyme activity and mitigates heat stress of cucumber leaves. Scientia Horticulturae, 148(1), 235-245.
[37]  Chen, C., Wang, L., Wang, R., Luo, X. H., Li, Y. F., Li, J., Li, Y. N., & Chen, Z. G. (2018). Phenolic contents, cellular antioxidant activity and antiproliferative capacity of different varieties of oats. Food Chemistry, 239, 260-267.
[38]  Wolfe, K. L., & Liu, R. H. (2008). Structure-activity relationships of flavonoids in the cellular antioxidant activity assay. Journal of Agricultural and Food Chemistry, 56(18), 8404-8411.
[39]  Lima, K. G., Krause, G. C., Schuster, A. D., Catarina, A. V., Basso, B. S. De Mesquita, F. C., Pedrazza, L., Marczak, E. S., Martha, B. A., Nunes, F. B., Chiela, E. C., Jaeger, N., Thomé, M. P., Haute, G. V., Dias, H. B., Donadio, M. V., & De Oliveira, J. R. (2016). Gallic acid reduces cell growth by induction of apoptosis and reduction of IL-8 in HepG2 cells. Biomedicine and pharmacotherapy, 84, 1282-1289.
[40]  Yan, Y., Liu, N., Hou, N., Dong, L,. & Li, J. (2017). Chlorogenic acid inhibits hepatocellular carcinoma in vitro and in vivo. Journal of Nutritional Biochemistry, 46, 68-73.
[41]  Jain, P., Kumar, N., Josyula, V. R., Jagani, H. V,. Udupa, N., Mallikarjuna R. C., & Vasanth, R. P. (2013). A study on the role of (+)-catechin in suppression of HepG2 proliferation via caspase dependent pathway and enhancement of its in vitro and in vivo cytotoxic potential through liposomal formulation. European Journal of Pharmaceutical Sciences, 50(3-4), 353-365.
[42]  Wang, L. F, Chen, J. Y., Xie, H. H., Ju, X. R., & Liu, R. H. (2013). Phytochemical profiles and antioxidant activity of adlay varieties. Journal of Agriculture and Food Chemistry, 61(21), 5103-5113.
[43]  Lu, K. K., Tan, Y. R., Zheng ,S. J., Liu, D., Wu, S. R., & Ming, J. (2015). Antioxidant and antiproliferative activities of polyphenols in Morchella umbrina Boud on the HepG2 cell model. Modern Food Science and Technology, 12(31), 6-13.
[44]  Olszewska, M. A., & Michel, P. (2009). Antioxidant activity of inflorescences, leaves and fruits of three Sorbus species in relation to their polyphenolic composition. Natural Product Research, 23(16), 1507-1521.
[45]  Alañón, M. E., Castro-Vázquez, L., Díaz-Maroto, M. C., Gordon, M. H., & Pérez-Coello, M. S. (2011). A study of the antioxidant capacity of oak wood used in wine ageing and the correlation with polyphenol composition. Food Chemistry, 128(4), 997-1002.
[46]  Ehrlich, V., Darroudi, F., Uhl, M., Steinkellnera, H., Gannc, M., Majer, B. J., & Knasmuller, S. (2002). Genotoxic effects of ochratoxin A in human-derived hepatoma (HepG2) cells. Food and Chemical Toxicology, 40(8), 1085-1090.