Journal of Food and Nutrition Research
ISSN (Print): 2333-1119 ISSN (Online): 2333-1240 Website: http://www.sciepub.com/journal/jfnr Editor-in-chief: Prabhat Kumar Mandal
Open Access
Journal Browser
Go
Journal of Food and Nutrition Research. 2017, 5(6), 406-412
DOI: 10.12691/jfnr-5-6-7
Open AccessArticle

Curcumin Suppresses the Activity of Inhibitor-κB Kinase in an in vitro Inflamed Human Intestinal Mucosa Model by S-nitrosylation

Ning-Jo Kao1 and Zwe-Ling Kong1,

1Department of Food Science, National Taiwan Ocean University, Keelung, Taiwan. R.O.C.

Pub. Date: May 25, 2017

Cite this paper:
Ning-Jo Kao and Zwe-Ling Kong. Curcumin Suppresses the Activity of Inhibitor-κB Kinase in an in vitro Inflamed Human Intestinal Mucosa Model by S-nitrosylation. Journal of Food and Nutrition Research. 2017; 5(6):406-412. doi: 10.12691/jfnr-5-6-7

Abstract

In previous study, we found curcumin to possess anti-inflammatory properties in lipopolysaccharide (LPS)-induced macrophage cells due to the involvement of curcumin and S-nitrosylation in the NF-κB pathway. However, the role of curcumin on regulation of NF-κB signaling pathway through S-nitrosylation in an in vitro inflamed human intestinal mucosa model has not yet been elucidated. This study aimed to concern inhibitory effects of curcumin on NF-κB pathway in two type of inflamed human intestinal cells, Caco-2 and HT-29. Western blot presented the protein expression of iNOS can be reduced by treated curcumin with 30 μM for 12h. Consistently, pro-inflammatory cytokines, such as IL-1β, IL-6, TNFα and IFN-γ was also repressed. The results also shows curcumin reduced the amount of nitrite and nitrate in inflamed human intestinal cells, Caco-2 and HT-29, maintained total S-nitrosylation level on proteins. Furthermore, the protection of S-nitrosylation on IKKβ in inflamed Caco-2 and HT-29 cells by curcumin caused the repression of IκB phosphorylation and NF-κB activation. In conclusion, this study verified that curcumin-mediated S-nitrosylation may be as an important regulator for anti-inflammation in an in vitro inflamed human intestinal mucosa model.

Keywords:
curcumin S-nitrosylation inflamed human intestinal cells NF-κB IκB IKK nitric oxide

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Lee, M. Choy, J.C., 2013. Positive feedback regulation of human inducible nitric-oxide synthase expression by Ras protein S-nitrosylation, J. Biol. Chem. 288, 15677-15686.
 
[2]  Itzkowitz, S.H., Yio, X., 2004. Colorectal cancer in inflammatory bowel disease: the role of inflammation, Am. J. Physiol. Gastrointest. Liver Physiol. 287, G7-17.
 
[3]  Xu, W. Liu, L.Z., Loizidou, M., Ahmed, M., Charles, I.G., 2002. The role of nitric oxide in cancer, Cell Res. 12, 311-320.
 
[4]  Tanaka, T., 2012. Development of an inflammation-associated colorectal cancer model and its application for research on carcinogenesis and chemoprevention, Int. J. Inflamm. 2012, 658-786.
 
[5]  Kim, S.F. Huri, D.A., Snyder, S.H., 2005. Inducible nitric oxide synthase binds, S-nitrosylates, and activates cyclooxygenase-2, Science. 310, 1966-1970.
 
[6]  Martínez-Ruiz, A., Lamas, S., 2004. S-nitrosylation: a potential new paradigm in signal transduction, Cardiovasc Res. 62, 43-52.
 
[7]  Hess, D.T., Stamler, J.S., 2002. Regulation by S-Nitrosylation of Protein Post-translational Modification, J. Biol. Chem. 287, 4411-4418.
 
[8]  Ruby, G.K.A.J., Dinesh Babu, K., Rajasekharan, K.N., Kuttan, R., 1995. Anti-tumour and antioxidant activity of natural curcuminoids, Cancer Lett. 94, 79-83.
 
[9]  Gilmore, T.D., 2006. Introduction to NF-κB: players, pathways, perspectives, Oncogene. 25, 6680-6684.
 
[10]  Hayden, M.S., West, A.P., Ghosh, S., 2006. NF-κB and the immune response, Oncogene. 25, 6758-6780.
 
[11]  Sreejayan, N., Rao, M.N. 1996. Free radical scavenging activity of curcuminoids, Arzneimittelforschung, Drug Res. 46, 169-171.
 
[12]  Satoskar, R.R., Shah, S.J., Shenoy, S.G., 1986. Evaluation of anti-inflammatory property of curcumin (diferuloyl methane) in patients with postoperative inflammation, Int. J. Clin. Pharmacol. Ther. Toxicol. 24, 651-654.
 
[13]  Santel, T., Pflug, G., Hemdan, N.Y.A., Schäfer, A., Hollenbach, M. Buchold, M. et al., 2008. Curcumin inhibits glyoxalase-1: a possible link to its anti-inflammatory and antitumor activity, PLOS ONE. 3, e3508.
 
[14]  Huang, M.T., Lysz, T.T., Ferraro, T.F., Abidi, J.D., Laskin, A.H., 1991. Conney, Inhibitory effects of curcumin on in vitro lipoxygenase and cyclooxygenase activities in mouse epidermis, Cancer Res. 51, 813-819.
 
[15]  Chan, M.M.Y., Huang, H.I. Fenton, M.R. Fong, D. 1998. In vivo inhibition of nitric oxide synthase gene expression by curcumin - a cancer preventive natural product with anti-inflammatory properties, Biochem. Pharmacol. 55, 1955-1962.
 
[16]  Pan, M.H., Lin-Shiau, S.Y., Lin, J.K., 2000. Comparative studies on the suppression of nitric oxide synthase by curcumin and its hydrogenated metabolites through down-regulation of IkappaB kinase and NFkappaB activation in macrophages, Biochem. Pharmacol. 60, 1665-1676.
 
[17]  Tennesen, H.H., Greenhill, J.V., 1992. Studies on curcumin and curcuminoids. XXII: curcumin as a reducing agent and as a radical scavenger, Int. J. Pharm. 87, 79-87.
 
[18]  Onoda, M., Inano, H., 2000. Effect of curcumin on the production of nitric oxide by cultured rat mammary gland, Nitric Oxide. 4, 505-515.
 
[19]  Sreejayan, M., Rao, N., 1997. A nitric oxide scavenging by curcuminoids, J. Pharm. Pharmacol. 49, 105-107.
 
[20]  Johnston, B.D., DeMaster, E.G., 2003. Suppression of nitric oxide oxidation to nitrite by curcumin is due to the sequestration of the reaction intermediate nitrogen dioxide, not nitric oxide, Nitric Oxide. 8, 231-234.
 
[21]  Kao, N.J., Wu, C.S., Hu, J.Y., Kong, Z.L., 2016. S-nitrosylation of Inhibitor-κB kinase: Identifying Novel Targets of Curcumin. Journal of Food and Nutrition Research. 4(9), 600-609.
 
[22]  Kao, N.J., Hu, J.Y., Wu, C.S., Kong, Z.L., 2016. Curcumin represses the activity of inhibitor-κB kinase in dextran sulfate sodium-induced colitis by S-nitrosylation, Int. Immunopharmacol. 38, 1-7.
 
[23]  Van De Walle, J., Hendrickx, A., Romier, B., Larondelle, Y., Schneider, Y.J., 2010. Inflammatory parameters in Caco-2 cells: Effect of stimuli nature, concentration, combination and cell differentiation, Toxicol In Vitro. 24, 1441-1449.
 
[24]  Kazuho, A., Matsuki, N., 2000. Measurement of cellular 3-(4,5- dimethylthiazol- 2-yl)-2, 5-diphenyltetrazolium bromide (MTT) reduction activity and lactate dehydrogenase release using MTT. Neuroscience Research. 38, 325-329.
 
[25]  Fu, W.J., Stromberg, A.J., Viele, K., Carroll, R.J., Wu, G., 2001. Statistics and bioinformatics in nutritional sciences: analysis of complex data in the era of systems biology, J. Nutr. Biochem. 21, 561-572.
 
[26]  Chen, Y.J., Ku, W.C., Lin, P.Y., Chou, H.C., Khoo, K.H., Chen, Y.J., 2010. S-Alkylating Labeling Strategy for Site-Specific Identification of the S-Nitrosoproteome, J. Proteome Res. 9, 6417-6439.
 
[27]  Quintana, F.J., Hagedorn, P.H., Elizur, G., Merbl, Y., Domany, E., Cohen, I.R., 2004. Functional immunomics: Microarray analysis of IgG autoantibody repertoires predicts the future response of mice to induced diabetes, Proc Natl Acad Sci U S A. 101, 14615-14621.
 
[28]  Pan, M.H., Lin-Shiau, S.Y., Lin, J.K., 2000. Comparative studies on the suppression of nitric oxide synthase by curcumin and its hydrogenated metabolites through down-regulation of IκB kinase and NFκB activation in macrophages, Biochem. Pharmacol. 60, 1665-1676.
 
[29]  Dinarello, C.A., 2000. Proinflammatory Cytokines, Chest. 118, 503-508.
 
[30]  Viedt, C., Orth, S.R., 2000. Monocyte chemoattractant protein‐1 (MCP-1) in the kidney: does it more than simply attract monocytes? Nephrol. Dial. Transplant. 17, 2043-2047.
 
[31]  Hafler, D.A., 2007. Cytokines and interventional immunology, Nat. Rev. Immunol. 7, 423-423.
 
[32]  Johnston, B.D., DeMaster, E.G., 2003. Suppression of nitric oxide oxidation to nitrite by curcumin is due to the sequestration of the reaction intermediate nitrogen dioxide, not nitric oxide, Nitric Oxide. 8, 231-234.
 
[33]  Anand, P., Stamler, J.S., 2012. Enzymatic mechanisms regulating protein S-nitrosylation: implications in health and disease, J. Mol. Med. (Berl) 90, 233-244.
 
[34]  Sha, Y., Marshall, H.E., 2002. S-nitrosylation in the regulation of gene transcription. Biochim. Biophys. Acta. 1820, 701-711.
 
[35]  Vijaya Saradhi, U.V., Ling, Y., Wang, J., Chiu, M., Schwartz, E.B., Fuchs, J.R., Chan, K.K., Liu, Z. 2002. A liquid chromatography-tandem mass spectrometric method for quantification of curcuminoids in cell medium and mouse plasma, J. Chromatogr. B Biomed. Sci. Appl. 878, 3045-3051.
 
[36]  Saavedra, J.E., Billiar, T.R., Williams, D.L., Kim, Y.M., Watkins, S.C., Keefer, L.K., 1997. Targeting nitric oxide (NO) delivery in vivo. Design of a liver-selective NO donor prodrug that blocks tumor necrosis factor-alpha-induced apoptosis and toxicity in the liver, J. Med. Chem. 40, 1947-1954.
 
[37]  Lirk, P., Hoffmann, G., Rieder, J., 2002. Inducible nitric oxide synthase--time for reappraisal. Curr Drug Targets Inflamm Allergy 1, 89-108.
 
[38]  Ben, P., Liu, J., Lu, C., Xu, Y., Xin, Y., Fu, J., Huang, H., Zhang, Z., Gao, Y., Luo, L., Yin, Z., 2011. Curcumin promotes degradation of inducible nitric oxide synthase and suppresses its enzyme activity in RAW 264.7 cells, Int. Immunopharmacol. 11, 179-186.
 
[39]  Lambris, J. D., Hajishengallis, G., Ruan, Q., Chen, Y.H., 2012. Nuclear Factor-κB in Immunity and Inflammation: The Treg and Th17 Connection. Adv. Exp. Med. Biol. 946, 207-21.
 
[40]  Nussler, A. K., Billiar, T.R., 1993. Inflammation, immunoregulation, and inducible nitric oxide synthase. J. Leukoc Biol. 54, 171-178.