Journal of Food and Nutrition Research
ISSN (Print): 2333-1119 ISSN (Online): 2333-1240 Website: Editor-in-chief: Prabhat Kumar Mandal
Open Access
Journal Browser
Journal of Food and Nutrition Research. 2017, 5(6), 354-361
DOI: 10.12691/jfnr-5-6-1
Open AccessArticle

Optimized Cirsium setidens Nakai Fermented by Lentinula edodes Attenuates Lipid Accumulation by Regulating Fatty Acid Oxidation-mediated Lipolysis in 3T3-L1 Cells and High Calorie Diet-induced Obese Zebrafish

Kui-Jin Kim1, Jin-Ha Lee2, Boo-Yong Lee1 and Ok-Hwan Lee2,

1Department of Food Science and Biotechnology, College of Life Science, CHA University, Seongnam, Gyeonggi, Republic of Korea

2Department of Food Science and Biotechnology, Kangwon National University, Chuncheon, Kangwon, Republic of Korea

Pub. Date: May 13, 2017

Cite this paper:
Kui-Jin Kim, Jin-Ha Lee, Boo-Yong Lee and Ok-Hwan Lee. Optimized Cirsium setidens Nakai Fermented by Lentinula edodes Attenuates Lipid Accumulation by Regulating Fatty Acid Oxidation-mediated Lipolysis in 3T3-L1 Cells and High Calorie Diet-induced Obese Zebrafish. Journal of Food and Nutrition Research. 2017; 5(6):354-361. doi: 10.12691/jfnr-5-6-1


Cirsium setidens Nakai is an edible herb. Previously we found that fermented Cirsium setidens Nakai (FCSN) has a large amount of major bioactive compound compared to Cirsium setidens Nakai. In this study, we aimed to examine the anti-obesity effect of FCSN using 3T3-L1 cells in vitro and high calorie diet-induced obese (HDIO) zebrafish model in vivo. Our results demonstrated that FCSN significantly inhibited intracellular lipid accumulation in 3T3-L1 cells. FCSN was shown to reduce the expressions of crucial adipocyte differentiation markers, including PPARγ and aP2. FCSN also decreased the production of ROS due to the up-regulated expressions of SOD1, SOD2, GPx, and catalase. Furthermore, we observed that FCSN also altered the levels of energy metabolism and β-oxidation-associated genes such as AMPK, ACC, and CPT-1. In addition, ATGL, a key lipolysis enzyme, was stimulated while the differentiation of 3T3-L1 was suppressed by FCSN. Strikingly, we found that FCSN dramatically increased both the energy metabolism and β-oxidation associated genes and subsequently prevented the increase of body fat accumulation in high calorie diet-induced obese zebrafish. Taken together, this is the first study that demonstrates that FCSN has the beneficial activity to suppress adipogenesis in 3T3-L1 cells and ameliorate an obese-associated health condition in vivo.

fermented Cirsium setidens Nakai 3T3-L1 adipogenesis zebrafish β-oxidation high fat diet

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


[1]  Seidell, J,C., “Obesity, insulin resistance and diabetes--a worldwide epidemic,” British Journal of Nutrition, 83(Suppl 1), S5-S8, 2000.
[2]  Tappy, L. and Lê, K.A., “Metabolic effects of fructose and the worldwide increase in obesity,” Physiological Reviews, 90(1), 23-46, 2010.
[3]  Who, J. and Consultation, F.E., “Diet, nutrition and the prevention of chronic diseases,” World Health Organ Technical Report Series, 916(i-viii), 1-149, 2003.
[4]  Greenwood, C.E. and Winocur, G., “High-fat diets, insulin resistance and declining cognitive function,” Neurobiology of aging, 26(Suppl 1), 42-45, 2005.
[5]  Chong, M.F., Macdonald, R., and Lovegrove, J.A., “Fruit polyphenols and CVD risk: a review of human intervention studies,”. British Journal of Nutrition, 104(Suppl 3), S28-S39, 2010.
[6]  Gaziano, J.M., Manson, J.E., Branch, L.G., Colditz, G.A., Willett, W.C., and Buring, J.E., “A prospective study of consumption of carotenoids in fruits and vegetables and decreased cardiovascular mortality in the elderly,” Annals of epidemiology, 5(4), 255-260, 1995.
[7]  Kennedy, D., Haskell, C., Wesnes, K., and Scholey, A., “Improved cognitive performance in human volunteers following administration of guarana (Paullinia cupana) extract: comparison and interaction with Panax ginseng,” Pharmacology Biochemistry and Behavior, 79(3), 401-411, 2004.
[8]  Buijsse, B., Feskens, E.J., Schulze, M.B., Forouhi, N.G., Wareham, N.J., Sharp, S., Palli, D., Tognon, G., Halkjaer, J., Tjønneland, A., Jakobsen, M.U., Overvad, K., van der A, D.L., Du, H., Sørensen, T.I., and Boeing, H., “Fruit and vegetable intakes and subsequent changes in body weight in European populations: results from the project on Diet, Obesity, and Genes (DiOGenes),” The American Journal of Clinical Nutrition, 90(1), 202-209, 2009.
[9]  Velioglu, Y., Mazza, G., Gao, L., and Oomah, B., “Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products,” Journal of Agricultural and Food Chemistry, 46(10), 4113-4117, 1998.
[10]  Harnly, J.M., Doherty, R.F., Beecher, G.R., Holden, J.M., Haytowitz, D.B., Bhagwat, S., and Gebhardt, S., “Flavonoid content of US fruits, vegetables, and nuts,” Journal of Agricultural and Food Chemistry, 54(26), 9966-9977, 2006.
[11]  Bourassa, P., Kanakis, C., Tarantilis, P., Pollissiou, M., and Tajmir-Riahi, H., “Resveratrol, genistein, and curcumin bind bovine serum albumin,” The Journal of Physical Chemistry B, 114(9), 348-3354, 2010.
[12]  Si, H. and Liu, D., “Phytochemical genistein in the regulation of vascular function: new insights,” Current Medicinal Chemistry, 14(24), 2581-2589, 2007.
[13]  Owuor, E.D. and Kong, A.N., “Antioxidants and oxidants regulated signal transduction pathways,” Biochemical Pharmacology, 64(5-6), 765-770, 2002.
[14]  Kim, H.L., Park, J., Park, H., Jung, Y., Youn, D.H., Kang, J., Jeong, M.Y., and Um, J.Y., “Platycodon grandiflorum A. De Candolle ethanolic extract inhibits adipogenic regulators in 3T3-L1 cells and induces mitochondrial biogenesis in primary brown preadipocytes,” Journal of Agricultural and Food Chemistry, 63(35), 7721-7730, 2015.
[15]  Choi, J., Kim, K. J., Koh, E. J., and Lee, B.Y., “Altered Gelidium elegans extract-stimulated beige-like phenotype attenuates adipogenesis in 3T3-L1 Cells,” Journal of Food and Nutrition Research, 4(7), 448-453, 2016.
[16]  Misawa, K., Hashizume, K., Yamamoto, M., Minegishi, Y., Hase, T., and Shimotoyodome, A., “Ginger extract prevents high-fat diet-induced obesity in mice via activation of the peroxisome proliferator-activated receptor δ pathway,” The Journal of Nutritional Biochemistry, 26(10), 1058-1067, 2015.
[17]  Surh, J.H., Kim, J.O., Kim, M.H., Lee, J.C., Yang, H.W., Lee, B.Y., Kim, M. Y., Yun, S. J., and Jeong, H. R., “Nutritional properties, as food resources for menu development, of cubed snailfish, shaggy sea raven, and two kinds of wild vegetables that are staple products in Samcheok,” Korean Journal of Food and Cookery Science, 25(6), 690-702, 2009.
[18]  Lee, S.H., Heo, S.I., Li, L., Lee, M.J., and Wang, M.H., “Antioxidant and hepatoprotective activities of Cirsium setidens Nakai against CCl4-induced liver damage,” The American Journal of Chinese medicin, 36(1), 107-114, 2008.
[19]  Lee, W.B., Kwon, H.C., Cho, O.R., Lee, K.C., Cho, S.U., Baek, N.I., and Lee, K.R., “Phytochemical constituens of Cirsium setidens Nakai and their cytotoxicity against human cancer cell lines,” Archives of Pharmacal Research, 25(5), 628-635, 2002.
[20]  Lee, O.H., Kim, J.H., Kim, Y.H., Lee, Y.J., Lee, J.S., Jo, J.H., Kim, B.G., Lim, J.K., and Lee, B.Y., “Nutritional components and physiological activities of Cirsium setidens Nakai,” Journal of the Korean Society of Food Science and Nutrition, 43(6), 791-798, 2014.
[21]  Kim, E.M. and Won, S.I., “Functional composition and antioxidative activity from different organs of native Cirsium and Carduus Genera,” Korean Journal of Food and Cookery Science, 25(4), 406-414, 2009.
[22]  Lee, S.H., Jung, M.J., Heo, S.I., and Wang, M.H., “Anti-inflammatory effect and HPLC analysis of extract from edible Cirsium setidens,” Journal of the Korean Society for Applied Biological Chemistry, 52(5), 437-442, 2009.
[23]  Lee, Y.J., Lee, J.H., Kim, Y.H., Kim, J.H., Yu, S.Y., Kim, D.B., Lee, J. S., Cho, M. L., Cho, J. H., Kim B. K., Lee, B. Y., and Lee, O. H., “Assessment of the pectolinarin content and the radical scavenging-linked antiobesity activity of Cirsium setidens Nakai extracts,” Food Science and Biotechnology, 24(6), 2235-2243, 2015.
[24]  Oh, J.W., Lee, J.H., Cho, M.L., Shin, G.H., Kim, J.M., Choi, S.I., Jung, T. D., Kim, Y. H., Lee, S. J., Lee, B. J., Park, S. J., and Lee, O. H., “Development and validation of analytical method for pectolinarin and pectolinarigenin in fermented Cirsium setidens Nakai by bioconversion,” Journal of the Korean Society of Food Science and Nutrition, 44(10), 1504-1509, 2015.
[25]  Kamigaki, M., Sakaue, S., Tsujino, I., Ohira, H., Ikeda, D., Itoh, N., Ishimaru, S., Ohtsuka, Y., and Nishimura, M., “Oxidative stress provokes atherogenic changes in adipokine gene expression in 3T3-L1 adipocytes,” Biochemical and Biophysical Research Communications, 339(2), 624-32, 2006.
[26]  Basuroy, S., Bhattacharya, S., Leffler, C.W., and Parfenova H., “Nox4 NADPH oxidase mediates oxidative stress and apoptosis caused by TNF-α in cerebral vascular endothelial cells,” American Journal of Physiology-Cell Physiology, 296(3), C422-C432, 2009.
[27]  Kim, H.J. and Vaziri, N.D., “Contribution of impaired Nrf2-Keap1 pathway to oxidative stress and inflammation in chronic renal failure,” American Journal of Physiology-Renal Physiology, 298(3), F662-F671, 2010.
[28]  Gorrini, C., Harris, I.S., and Mak, T.W., “Modulation of oxidative stress as an anticancer strategy,” Nature reviews Drug discovery, 12(12), 931-947, 2013.
[29]  Schneider, K., Valdez, J., Nguyen, J., Vawter, M., Galke, B., Kurtz, T.W., and Chan, J.Y., “Increased energy expenditure, Ucp1 expression, and resistance to diet-induced obesity in mice lacking nuclear factor-erythroid-2-related transcription factor-2 (Nrf2),” The Journal of Biological Chemistry, 291(14), 7754-7766, 2016.
[30]  Jeon, S.M., “Regulation and function of AMPK in physiology and diseases,” Experimental & Molecular Medicine, 48, e245, 2016.
[31]  Bettaieb, A., Bakke, J., Nagata, N., Matsuo, K., Xi, Y., Liu, S., AbouBechara, D., Melhem, R., Stanhope, K., Cummings, B., Graham, J., Bremer, A., Zhang, S., Lyssiotis, C.A., Zhang, Z.Y., Cantley, L.C., Havel, P.J., and Haj, F.G., “Protein tyrosine phosphatase 1B regulates pyruvate kinase M2 tyrosine phosphorylation,” The Journal of Biological Chemistry, 288(24), 17360-17371, 2013.
[32]  Havel, P.J., “Role of adipose tissue in body-weight regulation: mechanisms regulating leptin production and energy balance,” Proceedings of the Nutrition Society, 59(3), 359-371, 2000.
[33]  Fantuzzi, G., “Adipose tissue, adipokines, and inflammation,” Journal of Allergy and Clinical Immunology, 115(5), 911-919, 2005.
[34]  Lefterova, M.I., Zhang, Y., Steger, D.J., Schupp, M., Schug, J., Cristancho, A., Feng, D., Zhuo, D., Stoeckert, C.J.Jr., Liu, X.S., and Lazar, M.A., “PPARγ and C/EBP factors orchestrate adipocyte biology via adjacent binding on a genome-wide scale,” Genes & Development, 22(21), 2941-2952, 2008.
[35]  Suzuk, R., Tanaka, M., Takanashi, M., Hussain, A., Yuan, B., Toyoda, H., and Kuroda, M., “Anthocyanidins-enriched bilberry extracts inhibit 3T3-L1 adipocyte differentiation via the insulin pathway,” Nutrition & Metabolism, 8, 14, 2011.
[36]  Moon, J., Do, H.J., Kim, O.Y., and Shin, M.J., “Antiobesity effects of quercetin-rich onion peel extract on the differentiation of 3T3-L1 preadipocytes and the adipogenesis in high fat-fed rats,” Food and Chemical Toxicology, 58, 347-354, 2013.
[37]  Koh, E.J., Kim, K.J., Choi, J., Jeon, H.J., Seo, M. J., and Lee, B.Y., “Ginsenoside Rg1 suppresses early stage of adipocyte development via activation of C/EBP homologous protein-10 in 3T3-L1 and attenuates fat accumulation in high fat diet-induced obese zebrafish,” Journal of Ginseng Research, 41(1), 23-30, 2017.
[38]  Inafuku, M., Nugara, R.N., Kamiyama, Y., Futenma, I., Inafuku, A., and Oku, H., “Cirsium brevicaule A. GRAY leaf inhibits adipogenesis in 3T3-L1 cells and C57BL/6 mice,” Lipids in Health and Disease, 12, 124, 2013.
[39]  Liu, G.S., Chan, E.C., Higuchi, M., Dusting, G.J., and Jiang, F., “Redox mechanisms in regulation of adipocyte differentiation: beyond a general stress response,” Cells, 1(4), 976-993, 2012.
[40]  Ikegami, T., Suzuki, Y., Shimizu, T., Isono, K., Koseki, H., and Shirasawa, T., “Model mice for tissue-specific deletion of the manganese superoxide dismutase gene,” Biochemical and Biophysical Research Communications, 296(3), 729-736, 2002.
[41]  Fransen, M., Nordgren, M., Wang, B., and Apanaset, O., “Role of peroxisomes in ROS/RNS-metabolism: implications for human disease,” Biochimica et Biophysica Acta, 1822(9), 1363-1373, 2012.
[42]  Calzadilla, P., Sapochnik, D., Cosentino, S., Diz, V., Dicelio, L., Calvo, JC., and Guerra, L.N., “N-acetylcysteine reduces markers of differentiation in 3T3-L1 adipocytes,” International Journal of Molecular Sciences, 12(10), 6936-6951, 2011.
[43]  Bedard, K. and Krause, K.H., “The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology,” Physiological Reviews. 87(1), 245-313, 2007.
[44]  Kovac, S., Angelova, P.R., Holmstrom, K.M., Zhang, Y., Dinkova-Kostova, A.T., and Abramov, A.Y., “Nrf2 regulates ROS production by mitochondria and NADPH oxidase,” Biochimica et Biophysica Acta, 1850(4), 794-801, 2015.
[45]  Hardie, D.G. and Pan, D.A., “Regulation of fatty acid synthesis and oxidation by the AMP-activated protein kinase,” Biochemical Society Transactions, 30(Pt 6), 1064-1070, 2002.
[46]  Thomson, D.M. and Winder, W.W., “AMP-activated protein kinase control of fat metabolism in skeletal muscle,” Acta Physiologica, 196(1), 147-54, 2009.
[47]  Wang, H., Bell, M., Sreenivasan, U., Hu, H., Liu, J., Dalen, K., Londos, C., Yamaguchi, T., Rizzo, M.A., Coleman, R., Gong, D., Brasaemle, D., and Sztalryd, C., “Unique regulation of adipose triglyceride lipase (ATGL) by perilipin 5, a lipid droplet-associated protein,” The Journal of Biological Chemistry, 286(18), 15707-15715, 2011.
[48]  Noh, H., Lee, H., Kim, E., Mu, L., Rhee, Y.K., Cho, C.W., and Chung, J., “Inhibitory effect of a Cirsium setidens extract on hepatic fat accumulation in mice fed a high-fat diet via the induction of fatty acid beta-oxidation,” Bioscience, Biotechnology, and Biochemistry, 77(7), 1424-1429, 2013.