Journal of Food and Nutrition Research
ISSN (Print): 2333-1119 ISSN (Online): 2333-1240 Website: Editor-in-chief: Prabhat Kumar Mandal
Open Access
Journal Browser
Journal of Food and Nutrition Research. 2017, 5(4), 274-280
DOI: 10.12691/jfnr-5-4-9
Open AccessArticle

Gelidium elegans Regulates Blood Glucose Homeostasis in ICR Mice

Jia Choi1, Kui-Jin Kim1, Eun-Jeong Koh1, Young-Jin Seo1 and Boo-Yong Lee1,

1Department of Food Science and Biotechnology, College of Life Science, CHA University, Seongnam, Kyonggi, Republic of Korea

Pub. Date: April 12, 2017

Cite this paper:
Jia Choi, Kui-Jin Kim, Eun-Jeong Koh, Young-Jin Seo and Boo-Yong Lee. Gelidium elegans Regulates Blood Glucose Homeostasis in ICR Mice. Journal of Food and Nutrition Research. 2017; 5(4):274-280. doi: 10.12691/jfnr-5-4-9


Gelidium elegans has been reported to improve metabolic function, but it has not been studied in non-obese mice with glucose tolerance. To evaluate the effect of Gelidium elegans (50 or 200 mg/kg doses) on glucose homeostasis, an oral glucose tolerance test (OGTT), oral maltose tolerance test (OMTT), and insulin tolerance test (ITT) were performed. The non-obese group of mice that was administered 200 mg/kg Gelidium elegans had significantly lowered blood glucose levels. By revealing that Gelidium elegans may improve glucose homeostasis, this study expands our understanding of the anti-diabetic effect of Gelidium elegans and its biological importance.

Gelidium elegans Gelidium amansii Hyperglycemia Diabetes Glucose absorption

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


[1]  Laakso, M., Hyperglycemia and cardiovascular disease in type 2 diabetes. Diabetes 1999, 48, 937-942.
[2]  Ikemoto, S., Takahashi, M., Tsunoda, N., Maruyama, K., et al., High-fat diet-induced hyperglycemia and obesity in mice: differential effects of dietary oils. Metabolism 1996, 45, 1539-1546.
[3]  Palsamy, P., Subramanian, S., Resveratrol, a natural phytoalexin, normalizes hyperglycemia in streptozotocin-nicotinamide induced experimental diabetic rats. Biomedicine & Pharmacotherapy 2008, 62, 598-605.
[4]  Cetin, M., Yetgin, S., Kara, A., Tuncer, A. M., et al., Hyperglycemia, ketoacidosis and other complications of L-asparaginase in children with acute lymphoblastic leukemia. Journal of medicine 1993, 25, 219-229.
[5]  Kelly, T. N., Bazzano, L. A., Fonseca, V. A., Thethi, T. K., et al., Systematic review: glucose control and cardiovascular disease in type 2 diabetes. Annals of internal medicine 2009, 151, 394-403.
[6]  De Vos, A., Heimberg, H., Quartier, E., Huypens, P., et al., Human and rat beta cells differ in glucose transporter but not in glucokinase gene expression. J Clin Invest 1995, 96, 2489-2495.
[7]  Zhao, F.-Q., Keating, A. F., Functional properties and genomics of glucose transporters. Current genomics 2007, 8, 113-128.
[8]  Wright, E. M., Renal Na+-glucose cotransporters. American Journal of Physiology-Renal Physiology 2001, 280, F10-F18.
[9]  Scheepers, A., Joost, H.-G., Schurmann, A., The glucose transporter families SGLT and GLUT: molecular basis of normal and aberrant function. Journal of Parenteral and Enteral Nutrition 2004, 28, 364-371.
[10]  Carruthers, A., Facilitated diffusion of glucose. Physiol Rev 1990, 70, 1135-1176.
[11]  Ohtsubo, K., Takamatsu, S., Minowa, M. T., Yoshida, A., et al., Dietary and genetic control of glucose transporter 2 glycosylation promotes insulin secretion in suppressing diabetes. Cell 2005, 123, 1307-1321.
[12]  Katz, E. B., Stenbit, A. E., Hatton, K., DePinhot, R., Charron, M. J., Cardiac and adipose tissue abnormalities but not diabetes in mice deficient in GLUT4. 1995.
[13]  Pantalone, K. M., Kattan, M. W., Yu, C., Wells, B. J., et al., The risk of developing coronary artery disease or congestive heart failure, and overall mortality, in type 2 diabetic patients receiving rosiglitazone, pioglitazone, metformin, or sulfonylureas: a retrospective analysis. Acta diabetologica 2009, 46, 145-154.
[14]  Steppan, C. M., Bailey, S. T., Bhat, S., Brown, E. J., et al., The hormone resistin links obesity to diabetes. Nature 2001, 409, 307-312.
[15]  Al-Khalili, L., Forsgren, M., Kannisto, K., Zierath, J., et al., Enhanced insulin-stimulated glycogen synthesis in response to insulin, metformin or rosiglitazone is associated with increased mRNA expression of GLUT4 and peroxisomal proliferator activator receptor gamma co-activator 1. Diabetologia 2005, 48, 1173-1179.
[16]  Schuster, D. P., Duvuuri, V., Diabetes mellitus. Clin Podiatr Med Surg 2002, 19, 79-107.
[17]  Stull, A. J., Cash, K. C., Johnson, W. D., Champagne, C. M., Cefalu, W. T., Bioactives in blueberries improve insulin sensitivity in obese, insulin-resistant men and women. The Journal of nutrition 2010, 140, 1764-1768.
[18]  Ding, L., Jin, D., Chen, X., Luteolin enhances insulin sensitivity via activation of PPARγ transcriptional activity in adipocytes. The Journal of nutritional biochemistry 2010, 21, 941-947.
[19]  Yu, H., Zhen, J., Yang, Y., Gu, J., et al., Ginsenoside Rg1 ameliorates diabetic cardiomyopathy by inhibiting endoplasmic reticulum stress-induced apoptosis in a streptozotocin-induced diabetes rat model. J Cell Mol Med 2016, 20, 623-631.
[20]  Cho, Y., Bang, M., Effects of dietary seaweed on blood glucose, lipid and glutathione enzymes in streptozotocin-induced diabetic rats. Journal of The Korean Society of Food Science and Nutrition 2004.
[21]  Maeda, H., Hosokawa, M., Sashima, T., Miyashita, K., Dietary combination of fucoxanthin and fish oil attenuates the weight gain of white adipose tissue and decreases blood glucose in obese/diabetic KK-Ay mice. J. of Agricultural and Food Chemistry 2007, 55, 7701-7706.
[22]  Kim, K. M., Hoarau, G. G., Boo, S. M., Genetic structure and distribution of Gelidium elegans (Gelidiales, Rhodophyta) in Korea based on mitochondrial cox1 sequence data. Aquatic botany 2012, 98, 27-33.
[23]  Jeon, H. J., Seo, M. J., Choi, H. S., Lee, O. H., Lee, B. Y., Gelidium elegans, an edible red seaweed, and hesperidin inhibit lipid accumulation and production of reactive oxygen species and reactive nitrogen species in 3T3-L1 and RAW264.7 cells. Phytother Res 2014, 28, 1701-1709.
[24]  Choi, J., Kim, K.-J., Koh, E.-J., Lee, B.-Y., Altered Gelidium elegans Extract-stimulated Beige-like Phenotype Attenuates Adipogenesis in 3T3-L1 Cells. Journal of Food and Nutrition Research 2016, 4, 448-453.
[25]  Kang, M.-C., Kang, N., Kim, S.-Y., Lima, I. S., et al., Popular edible seaweed, Gelidium amansii prevents against diet-induced obesity. Food and Chemical Toxicology 2016, 90, 181-187.
[26]  Kim, K.-J., Choi, J., Lee, B.-Y., Evaluation of the Genotoxicity of a <i>Gelidium elegans</i> Extract in Vitro and in Vivo. Journal of Food and Nutrition Research 2016, 4, 653-657.
[27]  Martyn, J. A. J., Kaneki, M., Yasuhara, S., Obesity-induced Insulin Resistance and HyperglycemiaEtiologic Factors and Molecular Mechanisms. The Journal of the American Society of Anesthesiologists 2008, 109, 137-148.
[28]  Association, A. D., Diagnosis and classification of diabetes mellitus. Diabetes care 2006, 29, S43.
[29]  Schmidt, M. I., Duncan, B. B., Reichelt, A. J., Branchtein, L., et al., Gestational diabetes mellitus diagnosed with a 2-h 75-g oral glucose tolerance test and adverse pregnancy outcomes. Diabetes care 2001, 24, 1151-1155.
[30]  Stern, M. P., Williams, K., Haffner, S. M., Identification of persons at high risk for type 2 diabetes mellitus: do we need the oral glucose tolerance test? Annals of Internal Medicine 2002, 136, 575-581.
[31]  Ernsberger, P., Koletsky, R. J., The glucose tolerance test as a laboratory tool with clinical implications, INTECH Open Access Publisher 2012.
[32]  Pruessner, J. C., Kirschbaum, C., Meinlschmid, G., Hellhammer, D. H., Two formulas for computation of the area under the curve represent measures of total hormone concentration versus time-dependent change. Psychoneuroendocrinology 2003, 28, 916-931.
[33]  Seo, K. I., Choi, M. S., Jung, U. J., Kim, H. J., et al., Effect of curcumin supplementation on blood glucose, plasma insulin, and glucose homeostasis related enzyme activities in diabetic db/db mice. Molecular nutrition & food research 2008, 52, 995-1004.
[34]  Paz, K., Hemi, R., LeRoith, D., Karasik, A., et al., A Molecular Basis for Insulin Resistance elevated serine/threonine phosphorylation of irs-1 and irs-2 inhibits their binding to the juxtamembrane region of the insulin receptor and impairs their ability to undergo insulin-induced tyrosine phosphorylation. Journal of Biological Chemistry 1997, 272, 29911-29918.
[35]  Cho, H., Mu, J., Kim, J. K., Thorvaldsen, J. L., et al., Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKB beta). Science 2001, 292, 1728-1731.
[36]  Derave, W., Eijnde, B. O., Verbessem, P., Ramaekers, M., et al., Combined creatine and protein supplementation in conjunction with resistance training promotes muscle GLUT-4 content and glucose tolerance in humans. Journal of Applied Physiology 2003, 94, 1910-1916.
[37]  Agyemang, K., Han, L., Liu, E., Zhang, Y., et al., Recent advances in Astragalus membranaceus anti-diabetic research: pharmacological effects of its phytochemical constituents. Evidence-Based Complementary and Alternative Medicine 2013, 2013.
[38]  Pari, L., Satheesh, M. A., Effect of pterostilbene on hepatic key enzymes of glucose metabolism in streptozotocin-and nicotinamide-induced diabetic rats. Life sciences 2006, 79, 641-645.
[39]  Tunnicliffe, J. M., Shearer, J., Coffee, glucose homeostasis, and insulin resistance: physiological mechanisms and mediators. Applied Physiology, Nutrition, and Metabolism 2008, 33, 1290-1300.
[40]  Vuong, T., Martineau, L. C., Ramassamy, C., Matar, C., Haddad, P. S., Fermented Canadian lowbush blueberry juice stimulates glucose uptake and AMP-activated protein kinase in insulin-sensitive cultured muscle cells and adipocytes This article is one of a selection of papers published in this special issue (part 1 of 2) on the Safety and Efficacy of Natural Health Products. Canadian journal of physiology and pharmacology 2007, 85, 956-965.
[41]  Jiménez‐Osorio, A. S., Monroy, A., Alavez, S., Curcumin and insulin resistance—Molecular targets and clinical evidences. Biofactors 2016, 42, 561-580.
[42]  Ademiluyi, A. O., Oboh, G., Soybean phenolic-rich extracts inhibit key-enzymes linked to type 2 diabetes (α-amylase and α-glucosidase) and hypertension (angiotensin I converting enzyme) in vitro. Experimental and Toxicologic Pathology 2013, 65, 305-309.
[43]  Yilmazer-Musa, M., Griffith, A. M., Michels, A. J., Schneider, E., Frei, B., Grape seed and tea extracts and catechin 3-gallates are potent inhibitors of α-amylase and α-glucosidase activity. Journal of agricultural and food chemistry 2012, 60, 8924-8929.
[44]  Louie, J. C. Y., Moshtaghian, H., Boylan, S., Flood, V. M., et al., A systematic methodology to estimate added sugar content of foods. European journal of clinical nutrition 2015, 69, 154-161.
[45]  Anderson, G., Sugars-containing beverages and post-prandial satiety and food intake. International Journal of Obesity 2006, 30, S52-S59.
[46]  Murao, S., Nagano, H., Ogura, S., Nishino, T., Enzymatic synthesis of trehalose from maltose. Agricultural and biological chemistry 1985, 49, 2113-2118.
[47]  Fernández-Arrojo, L., Marin, D., De Segura, A. G., Linde, D., et al., Transformation of maltose into prebiotic isomaltooligosaccharides by a novel α-glucosidase from Xantophyllomyces dendrorhous. Process Biochemistry 2007, 42, 1530-1536.
[48]  Lebovitz, H. E., Alpha-glucosidase inhibitors. Endocrinology and metabolism clinics of North America 1997, 26, 539-551.
[49]  Joubert, P., Venter, H., Foukaridis, G., The effect of miglitol and acarbose after an oral glucose load: a novel hypoglycaemic mechanism? British journal of clinical pharmacology 1990, 30, 391-396.
[50]  Van de Laar, F. A., Lucassen, P. L., Akkermans, R. P., Van de Lisdonk, E. H., et al., Alpha‐glucosidase inhibitors for type 2 diabetes mellitus. The Cochrane Library 2005.
[51]  Tchamgoue, A. D., Tchokouaha, L. R., Domekouo, U. L., Atchan, A. P., et al., Effect of Costus afer on Carbohydrates Tolerance Tests and Glucose Uptake.
[52]  Cheng, D. M., Roopchand, D. E., Poulev, A., Kuhn, P., et al., High phenolics Rutgers Scarlet Lettuce improves glucose metabolism in high fat diet‐induced obese mice. Molecular Nutrition & Food Research 2016.
[53]  Reaven, G. M., Role of insulin resistance in human disease. Diabetes 1988, 37, 1595-1607.
[54]  Lann, D., LeRoith, D., Insulin resistance as the underlying cause for the metabolic syndrome. Medical Clinics of North America 2007, 91, 1063-1077.
[55]  Mayerson, A. B., Hundal, R. S., Dufour, S., Lebon, V., et al., The effects of rosiglitazone on insulin sensitivity, lipolysis, and hepatic and skeletal muscle triglyceride content in patients with type 2 diabetes. Diabetes 2002, 51, 797-802.
[56]  Gelato, M. C., Mynarcik, D. C., Quick, J. L., Steigbigel, R. T., et al., Improved insulin sensitivity and body fat distribution in HIV-infected patients treated with rosiglitazone: a pilot study. Journal of acquired immune deficiency syndromes (1999) 2002, 31, 163-170.
[57]  Hirst, S., Phillips, D., Vines, S., Clark, P., Hales, C., Reproducibility of the short insulin tolerance test. Diabetic medicine 1993, 10, 839-842.
[58]  Lindheim, S. R., Presser, S. C., Ditkoff, E. C., Vijod, M. A., et al., A possible bimodal effect of estrogen on insulin sensitivity in postmenopausal women and the attenuating effect of added progestin. Fertility and sterility 1993, 60, 664-667.
[59]  Abrams, R. L., Grumbach, M. M., Kaplan, S. L., The effect of administration of human growth hormone on the plasma growth hormone, cortisol, glucose, and free fatty acid response to insulin: evidence for growth hormone autoregulation in man. Journal of Clinical Investigation 1971, 50, 940.
[60]  Timmers, S., Hesselink, M. K., Schrauwen, P., Therapeutic potential of resveratrol in obesity and type 2 diabetes: new avenues for health benefits? Annals of the New York Academy of Sciences 2013, 1290, 83-89.