Journal of Food and Nutrition Research
ISSN (Print): 2333-1119 ISSN (Online): 2333-1240 Website: Editor-in-chief: Prabhat Kumar Mandal
Open Access
Journal Browser
Journal of Food and Nutrition Research. 2016, 4(11), 720-728
DOI: 10.12691/jfnr-4-11-4
Open AccessArticle

Assessment of Quality Attributes and Steviosides of Stevia rebaudiana Leaves Subjected to Different Drying Methods

Roberto A. Lemus-Mondaca1, , Antonio Vega-Gálvez2, Pilar Rojas2 and Kong Ah-Hen3

1Food Engineering Department, Universidad de La Serena, Av. Raúl Bitrán Nachary 1305, Box 599, La Serena, Chile

2Department of Food Engineering, Universidad de La Serena, Chile

3Institute of Food Science and Technology, Universidad Austral de Chile, Chile

Pub. Date: October 28, 2016

Cite this paper:
Roberto A. Lemus-Mondaca, Antonio Vega-Gálvez, Pilar Rojas and Kong Ah-Hen. Assessment of Quality Attributes and Steviosides of Stevia rebaudiana Leaves Subjected to Different Drying Methods. Journal of Food and Nutrition Research. 2016; 4(11):720-728. doi: 10.12691/jfnr-4-11-4


Stevia is a plant of great scientific interest due to its high sweetening power and its health benefits giving birth many researches related to changes of this quality by applying a conservation process. Therefore, the objective of this study was to evaluate the influence of different drying techniques (convection, vacuum, microwave, infrared, shade and freeze drying) on proximal analysis, vitamins C and E, fatty acid and amino acid profiles and steviosides from Stevia leaves. Stevioside was the main sweetener found in fresh sample and showed significant increase in all treatments, although convective was the less aggressive treatment (7.45% DM) followed by vacuum (7.02% DM). Stevia leaves may be used as a nutritional complement besides its sweetening power.

Stevia leaves drying treatments color aminoacids antioxidant natural sweeteners

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


[1]  Lemus-Mondaca, R., Vega-Gálvez, A., Zura-Bravo, L., Ah-Hen, K. Stevia rebaudiana Bertoni, source of a high-potency natural sweetener: A comprehensive review on the biochemical, nutritional and functional aspects. Food Chem. 132, 1121-1132. 2012.
[2]  Gregersen, S., Jeppesen, P.B., Holst, J.J. and Hermansen, K. (2004) Anti hyperglycemic effects of stevioside in type 2 subjects. Metabolis, 53, 73-76.
[3]  Chatsudthipong, V. and Muanprasat, C. (2009) Stevioside and related compounds: Therapeutic benefits beyond sweetness. Pharmacology & Therapeutics, 121, 41-54.
[4]  Wolwer-Rieck, U., Tomberg, W. and Wawrzun, A. (2010). Investigations on the stability of stevioside and rebaudioside A in soft drinks. Journal of Agriculture Food Chemistry, 58, 12216-12220.
[5]  Periche, A., Castelló, M., Heredia, A., Escriche, I. Influence of drying method on steviol glycosides and antioxidants in Stevia rebaudiana leaves. Food Chem 2, 1-6. 2015.
[6]  Mishra, P. K., Singh, R., Kumar, U., Prakash, V. Stevia rebaudiana – a magical sweetener. Global Journal of Biotechnology & Biochemistry, 5, 62-74. 2010.
[7]  Doymaz I (2005) Drying behaviour of green beans. J Food Eng 69: 161-165.
[8]  Tadhani, M., Subhash, R. Preliminary studies on Stevia rebaudiana leaves: Proximal composition, mineral analysis and phytochemical screening. Journal of Medical Sciences, 6, 321–326. 2006.
[9]  Vadivambal, R., D.S. Jayas. Changes in quality of microwave-treated agricultural products—a review. Biosystems Engineering, 98, 1-16. 2007.
[10]  Chan, E.W.C., Lim, Y.Y., Wong, S.K., Lim, K.K., Tan, S.P., Lianto, F.S., Yong, M.Y. Effects of different drying methods on the antioxidant properties of leaves and tea of ginger species. Food Chemistry, 113, 166-172. 2009.
[11]  Pinela, J., Barros, L., Carvalho, A., Ferreira, I. Influence of the drying method in the antioxidant potential and chemical composition of four shrubby flowering plants from the tribe Genisteae (Fabaceae). Food Chemical Toxicology, 49, 2983-2989. 2011.
[12]  Hossain, M.B., Barry-Ryan, C., Martin-Diana, A.B., Brunton, N.P. Effect of drying method on the antioxidant capacity of six Lamiaceae herbs. Food Chemistry, 123, 85-91. 2010.
[13]  Dorta, E., Lobo, M.G., González, M. Using drying treatments to stabilize mango peel and seed: Effect on antioxidant activity. LWT- Food Science and Technology, 45: 261-268. 2012.
[14]  Pinela, J., Barros, L., Dueñas, M., Carvalho, A.M., Santos-Buelga, C. Antioxidant activity, ascorbic acid, phenolic compounds and sugars of wild and commercial Tuberaria lignose samples: Effects of drying and oral preparation methods. Food Chemistry, 135: 1028-1035.2012.
[15]  AOAC. Official Method of Analysis N° 934.06, 960.52, 960.39, 962.09, 923.08 and 985.29, 15th Ed., Assoc. of Official Analytical Chemists, Arlington, VA. 1990.
[16]  Sellami, I.H., Wannes, W. A., Bettaieb, I., Berrima, S., Chahed, T., Marzouk, B., Limam, F. Qualitative and quantitative changes in the essential oil of Laurusnobilis L. leaves as affected by different drying methods. Food Chemistry, 126, 691-697. 2011.
[17]  Alibaş, İ. Determination of vacuum and air drying characteristics of celeriac slices. Journal of Biodiversity and Enviromental Sciences, 6, 1-13. 2012.
[18]  Hawlader, M. N. A., Perera, C. O., Tian, M. Properties of modified atmosphere heat pump dried foods. Journal of Food Engineering, 74, 392-401. 2006.
[19]  Gasmalla, M., Yang, R., Amadou, I., Hua, X. Nutritional Composition of Stevia rebaudiana Bertoni Leaf: Effect of Drying Method. Tropical Journal of Pharmaceutical Research, 13, 61-65. 2014.
[20]  Maskan, A., Kaya, S., Maskan, M. Hot air and sun drying of grape leather (pestil). Journal of Food Engineering, 54, 81–88. 2002.
[21]  Mohamed Hanaaa, A.R., Sallamb, Y.I., El-Leithyc, A.S., Alya, S.E. Lemongrass (Cymbopogon citratus) essential oil as affected by drying methods. Annals of Agricultural Sciences, 57, 113-116. 2012.
[22]  Chebrolu, K. K., Jayaprakasha, G. K., Yoo, K. S., Jifon, J. L., Patil, B. S. An improved sample preparation method for quantification of ascorbic acid and dehydroascorbic acid by HPLC. LWTFood Science and Technology, 47, 443-449. 2012.
[23]  Bahloul, N., Kechaou, N., Mihoubi, N.B. Comparative investigation of minerals, chlorophylls contents, fatty acid composition and thermal profiles of olive leaves (Olea europeae L.) as byproduct. Grasas y Aceites, 65 (3), e035. 2014.
[24]  Vega-Gálvez, A., Ah-Hen, K., Chacana, M., Vergara, J., Martínez-Monzó, J., García-Segovia, P., Lemus-Mondaca, R., Di Scala, K. Effect of temperature and air velocity on drying kinetics, antioxidant capacity, total phenolic content, colour, texture and microstructure of apple (var. Granny Smith) slices. Food Chemistry, 132, 51-59. 2012.
[25]  Meir, S., Kanner J., Akiri, B., Philosoph-Hadas, S. Determination and involvement of aqueous reducing compounds in oxidative defense systems of various senescing leaves. Journal of Agricultural and Food Chemistry, 43, 1813-1819. 1995.
[26]  Cohen, S.A., Meys M., Tarvin, T.L. The Pico-Tag Method: a Manual of Advanced Techniques for Amino Acid Analysis. Water Chromatography Division, Millipore Corp., Milford, MA. 1989.
[27]  Joint FAO/WHO Expert Committee on food additives, JECFA. Compendium of food additive specifications. Steviol glycosides. In: FAO (Ed.), FAO JECFA Monographs Rome, Italy. (pp. 17-21) Rome: FAO. 2010.
[28]  Diaz-Maroto, M. C., Perez-Coello, M. S., Cabezudo, M. D. Effect of different drying methods on the volatile components of parsley (Petroselinum crispum L.). European Food Research Technology, 215, 227-230. 2002.
[29]  Lemus-Mondaca, R., Vega-Gálvez, A., Moraga, N., Astudillo, S. Dehydration of Stevia rebaudiana Bertoni leaves: Kinetics, modeling and energy features. Journal of Food Processing and Preservation, 39, 508-520. 2015.
[30]  Christaki, E., Bonos, E., Giannenas, I., Karatzia, M., Florou-Paneri, P. Stevia rebaudiana as a novel source of food additives. Journal of Food and Nutrition Research, 52, 195-202. 2013.
[31]  Abou-Arab A.E., Abou-Arab A. A., Abu-Salem M. F. Physico-chemical assessment of natural sweeteners steviosides produced from Stevia rebaudiana Bertoni plant. African Journal of Food Science, 4, 269-281. 2010.
[32]  Goyal, S. K., Samsher, Goyal, R. K. Stevia (Stevia rebaudiana) a bio-sweetener: a review. Inernational Journal of Food Sciences and Nutrition, 61, 1-10. 2010.
[33]  Tanongkankit, T., Chiewchan, N., Devahastin, S. Physicochemical property changes of cabbage outer leaves upon preparation into functional dietary fiber powder. Food and Bioproducts Processing, 90, 541-548. 2012.
[34]  Segura-Campos, M., Barbosa-Martín, E., Matus-Basto, A., Cabrera-Amaro, D., Murguía Olmedo, M., Moguel-Ordoñez, Betancur-Ancona, D. Comparison of chemical and functional properties of Stevia rebaudiana (Bertoni) varieties cultivated in Mexican southeast. American Journal of Plant Sciences, 5, 286-293. 2014.
[35]  Lisiewska, Z., Kmiecik, W., Korus, A. Content of vitamin C, carotenoids, chlorophylls and polyphenols in green parts of dill (Anethum graveolens L.) depending on plant height. Journal of Food Composition and Analysis, 19, 134-140. 2006.
[36]  Youssef, K., Mokhtar, S. Effect of drying methods on the antioxidant capacity, color and phytochemicals of portula caoleracea l. leaves. Journal Nutrition & Food Sciences-OMICS International, 4:322. 2014.
[37]  Griffin, W., Quach, H., Steeper, R. Extraction and thin-layer chromatography of chlorophyll a and b from spinach. Journal of Chemical Education, 81, 385-387. 2004.
[38]  Reyes-Santamaría, M., Villegas-Monter, A., Colinas-León, M., Calderón-Zavala, G. Leaf specific weight, and protein and chlorophyll content in orange and tangerine leaves. Agrociencia, 34, 1. 2000.
[39]  Foidl, N., Makkar H.P.S., Becker K. The potential of Moringa oleifera for agricultural and industrial uses. In J. Lowell and C. T. A. Fuglie (Eds.), The miracle tree: The multiple uses of Moringa (pp. 45-76). Wageningen: The Netherlands. 2001.
[40]  Crawford, M., Galli, C., Visioli, F., Renaud, S., Simopoulos, A., Spector, A. Role of PlantDerived Omega–3 Fatty Acids in Human Nutrition. Annals Nutrition Metabolism, 44, 263-265. 2000.
[41]  Rezeng, C., Limao, C., Bin, L., Yourui S. Amino acid, fatty acid, and mineral compositions of fruit, stem, leaf and root of Rubusamabilis from the Qinghai-Tibetan Plateau. Journal of Food Composition and Analysis, 33, 26-31. 2014.
[42]  Korus, A. Effect of preliminary processing, method of drying and storage temperature on the level of antioxidants in kale (Brassica oleracea L. var. Acephala) leaves. LWT-Food Science and Technology, 44, 1711-1716. 2011.
[43]  Murcia, M., Lopez-Ayerra, B., Martinez-Toma, M., Garcia-Carmona, F. Effect of industrial processing on amino acid content of broccoli. Journal of the Science of Food and Agriculture, 81, 1299-1305. 2001.
[44]  Cacciola, F., Delmontea, P., Jaworska, K., Dugo P., Mondello, L., Rader, J. Employing ultrahigh pressure liquid chromatography as the second dimension in a comprehensive twodimensional system for analysis of Stevia rebaudiana extracts. Journal of Chromatography A, 1218, 2012-2018. 2011.
[45]  Gardana, C., Scaglianti, M., Simonetti, P. Evaluation of steviol and its glycosides in Stevia rebaudiana leaves and commercial sweetener by ultra-high performance liquid chromatography– mass spectrometry. Journal of Chromatography A, 1217, 1463-1470. 2010.
[46]  Jackson, A., Tata, A., Wu, C., Perry, R., Haas, G., West, L., Cooks, R.G. Direct analysis of Stevia leaves for diterpene glycosides by desorption electrospray ionization mass spectrometry. Analyst, 134, 867-874. 2009.
[47]  Pól, J., Hohnová, B., Hyötyläinen, T. Characterization of Stevia rebaudiana by comprehensive two-dimensional liquid chromatography time-of-flight mass spectrometry. Journal of Chromatography A, 1150, 85-92. 2007.
[48]  Geuns, J. Stevioside. Phytochemistry, 64, 913-921. 2003.
[49]  Tavarini, S., Angelini, L.G. Stevia rebaudiana Bertoni as a source of bioactive compounds: the effect of harvest time, experimental site and crop age on steviol glycoside content and antioxidant properties. Journal of the Science of Food and Agriculture, 93, 2121-9. 2013.