Journal of Food and Nutrition Research
ISSN (Print): 2333-1119 ISSN (Online): 2333-1240 Website: Editor-in-chief: Prabhat Kumar Mandal
Open Access
Journal Browser
Journal of Food and Nutrition Research. 2016, 4(9), 600-609
DOI: 10.12691/jfnr-4-9-7
Open AccessArticle

S-nitrosylation of Inhibitor-κB kinase: Identifying Novel Targets of Curcumin

Ning-Jo Kao1, Chien-Sheng Wu1, Jia-Yuan Hu1 and Zwe-Ling Kong1,

1Department of Food Science, National Taiwan Ocean University, Keelung, Taiwan, R.O.C.

Pub. Date: September 09, 2016

Cite this paper:
Ning-Jo Kao, Chien-Sheng Wu, Jia-Yuan Hu and Zwe-Ling Kong. S-nitrosylation of Inhibitor-κB kinase: Identifying Novel Targets of Curcumin. Journal of Food and Nutrition Research. 2016; 4(9):600-609. doi: 10.12691/jfnr-4-9-7


In this study, we investigated the preventive effects of curcumin using LPS (Lipopolysaccharides)-induced Raw264.7 cells and the potential role of curcumin in regulation of anti-inflammation through S-nitrosylation. Western blot presented the protein expression of iNOS can be reduced by treated curcumin with 5, 10 and 15 μM separately for 12 and 24h. Consistently, pro-inflammatory cytokines, such as IL-1β, IL-6, TNFα and IFN-γ was also repressed. Moreover, 5, 10 and 15 μM curcumin reduced the amount of nitrite and nitrate in LPS-induced Raw264.7 cells maintained total S-nitrosylation level on proteins at 12h, the similar results was also observed at 24h that indicating curcumin inhibited NO oxidation. Furthermore, the protection of S-nitrosylation on IKKβ in LPS-induced Raw264.7 cells at 12h by curcumin caused the repression of IκB phosphorylation and NF-κB activation. In conclusion, this study verified that curcumin-mediated S-nitrosylation may be as an important regulator for anti-inflammation in LPS-induced Raw264.7 cells.

curcumin S-nitrosylation NF-κB IκB IKK nitric oxide

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


Figure of 8


[1]  Hanada, T., Yoshimura, A., 2002. Regulation of cytokine signaling and inflammation. Cytokine & Growth Factor Reviews 13, 413-421.
[2]  Martínez-Ruiz, A., Lamas, S., 2004. S-nitrosylation: a potential new paradigm in signal transduction. Cardiovascular Research 62, 43-52.
[3]  Cilloni, D., Martinelli, G., Messa, F., Baccarani, M., Saglio, G., 2007. Nuclear factor κB as a target for new drug development in myeloid malignancies. Haematologica 92, 1224-1229.
[4]  Hess, D.T., Stamler, J.S., 2002. Regulation by S-Nitrosylation of Protein Post-translational Modification. Journal of Biological Chemistry 287, 4411-4418.
[5]  Gilmore, T.D., 2006. Introduction to NF-κB: players, pathways, perspectives. Oncogene 25, 6680-6684.
[6]  Hayden, M.S., West, A.P., Ghosh, S., 2006. NF-κB and the immune response. Oncogene 25, 6758-6780.
[7]  Chan, W.H., Wu, H.J., Hsuuw, Y.D., 2005. Curcumin Inhibits ROS Formation and Apoptosis in Methylglyoxal-Treated Human Hepatoma G2 Cells. Annals of the New York Academy of Sciences 1042, 372-378.
[8]  Kao, N.J., Hu, J.Y., Wu, C.S., Kong, Z.L., 2016. Curcumin represses the activity of inhibitor-κB kinase in dextran sulfate sodium-induced colitis by S-nitrosylation. International Immunopharmacology 38, 1-7.
[9]  Laroui, H., Ingersoll, S.A., Liu, H.C., Baker, M.T., Ayyadurai, S., Charania, M.A., Laroui, F., Yan, Y., Sitaraman, S.V., Merlin, D., 2012. Dextran sodium sulfate (DSS) induces colitis in mice by forming nanolipocomplexes with medium-chain-length fatty acids in the colon. PLoS ONE 7, e32084.
[10]  Kazuho, A., Matsuki, N., 2000. Measurement of cellular 3-(4,5- dimethylthiazol- 2-yl)-2, 5-diphenyltetrazolium bromide (MTT) reduction activity and lactate dehydrogenase release using MTT. Neuroscience Research 38, 325-329.
[11]  Fu, W.J., Stromberg, A.J., Viele, K., Carroll, R.J., Wu, G., 2001. Statistics and bioinformatics in nutritional sciences: analysis of complex data in the era of systems biology. The Journal of Nutritional Biochemistry 21, 561-572.
[12]  Jaffrey, S.R., Erdjument-Bromage, H., Ferris, C.D., Tempst, P., Snyder, S.H., 2001. Protein S-nitrosylation: a physiological signal for neuronal nitric oxide. Nat Cell Biol 3, 193-197.
[13]  Chen, Y.J., Ku, W.C., Lin, P.Y., Chou, H.C., Khoo, K.H., Chen, Y.J., 2010. S-Alkylating Labeling Strategy for Site-Specific Identification of the S-Nitrosoproteome. Journal of Proteome Research 9, 6417-6439.
[14]  Quintana, F.J., Hagedorn, P.H., Elizur, G., Merbl, Y., Domany, E., Cohen, I.R., 2004. Functional immunomics: Microarray analysis of IgG autoantibody repertoires predicts the future response of mice to induced diabetes. Proceedings of the National Academy of Sciences of the United States of America 101, 14615-14621.
[15]  Pan, M.H., Lin-Shiau, S.Y., Lin, J.K., 2000. Comparative studies on the suppression of nitric oxide synthase by curcumin and its hydrogenated metabolites through down-regulation of IκB kinase and NFκB activation in macrophages. Biochemical Pharmacology 60, 1665-1676.
[16]  Dinarello, C.A., 2000. Proinflammatory Cytokines. Chest 118, 503-508.
[17]  Viedt, C., Orth, S.R., 2000. Monocyte chemoattractant protein-1 (MCP-1) in the kidney: does it more than simply attract monocytes? Nephrology Dialysis Transplantation 17, 2043-2047.
[18]  Hafler, D.A., 2007. Cytokines and interventional immunology. Nat Rev Immunol 7, 423-423.
[19]  Foster, M.W., McMahon, T.J., Stamler, J.S., 2003. S-nitrosylation in health and disease. Trends in Molecular Medicine 9, 160-168.
[20]  Hess, D.T., Matsumoto, A., Kim, S.O., Marshall, H.E., Stamler, J.S., 2005. Protein S-nitrosylation: purview and parameters. Nat Rev Mol Cell Biol 6, 150-166.
[21]  Zhang, L., Wu, C., Zhao, S., Yuan, D., Lian, G., Wang, X., Wang, L., Yang, J., 2010. Demethoxycurcumin, a natural derivative of curcumin attenuates LPS-induced pro-inflammatory responses through down-regulation of intracellular ROS-related MAPK/NF-κB signaling pathways in N9 microglia induced by lipopolysaccharide. International Immunopharmacology 10, 331-338.
[22]  Borner, C.H., Volker, K.J., 2012. Mechanisms of the Inhibition of NF-κB by Morphine in Neuronal Cells. Molecular Pharmacology 81, 587-97.
[23]  Fang, J., Lu, J., Holmgren, A., 2005. Thioredoxin Reductase Is Irreversibly Modified by Curcumin. Journal of Biological Chemistry 280, 25284-25290.
[24]  Anand, P., Kunnumakkara, A.B., Newman, R.A., Aggarwal, B.B., 2007. Bioavailability of Curcumin: Problems and Promises. Molecular Pharmaceutic 4, 807-818.
[25]  Yamamoto, Y. G.R., 2001. Therapeutic potential of inhibition of the NF-kappaB pathway in the treatment of inflammation and cancer. J Clin Invest 107, 135-142.
[26]  Kim, K.M., Pae, H.O., Zhung, M., Ha, H.Y., Ha, Y.A., Chai, J.Y., Cheong, Y.K., Kim, J.M., Chung, H.T. 2008. Involvement of anti-inflammatory heme oxygenase-1 in the inhibitory effect of curcumin on the expression of pro-inflammatory inducible nitric oxide synthase in RAW264.7 cells. Biomedicine & Pharmacotherapy 62, 630-636.
[27]  Johnston, B.D., DeMaster, E.G., 2003. Suppression of nitric oxide oxidation to nitrite by curcumin is due to the sequestration of the reaction intermediate nitrogen dioxide, not nitric oxide. Nitric Oxide 8, 231-234.
[28]  Sha, Y., Marshall, H.E., 2002. S-nitrosylation in the regulation of gene transcription. Biochim Biophys Acta 1820, 701-711.
[29]  Reynaert, N.L., Ckless, K., Korn, S.H., Vos, N., Guala, A.S., Wouters, E.F., van der Vliet, A., Janssen-Heininger, T.M., 2004. Nitric oxide represses inhibitory κB kinase through S-nitrosylation. Proc Natl Acad Sci USA 101, 8945-8950.
[30]  Ługowski, M., Saczko, J., Kulbacka, J., Banaś, T., 2011. Reactive oxygen and nitrogen species. Pol Merkur Lekarski 31, 313-317.
[31]  Marshall, H.E., Stamler, J.S., 2002. Nitrosative Stress-induced Apoptosis through Inhibition of NF-κB. J Biol Chem 277, 34223-34228.
[32]  Tuba, A., Gülçin, İ., 2008, Antioxidant and radical scavenging properties of curcumin. Chemico-Biological Interactions 174(1), 27-37.
[33]  Vijaya Saradhi, U.V., Ling, Y., Wang, J., Chiu, M., Schwartz, E.B., Fuchs, J.R., Chan, K.K., Liu, Z. 2002. A liquid chromatography-tandem mass spectrometric method for quantification of curcuminoids in cell medium and mouse plasma. J. Chromatogr B, 878, 3045-3051.
[34]  Saavedra, J.E., Billiar, T.R., Williams, D.L., Kim, Y.M., Watkins, S.C., Keefer, L.K., 1997. Targeting nitric oxide (NO) delivery in vivo. Design of a liver-selective NO donor prodrug that blocks tumor necrosis factor-alpha-induced apoptosis and toxicity in the liver. J Med Chem 40, 1947-1954.
[35]  Lirk, P., Hoffmann, G., Rieder, J., 2002. Inducible nitric oxide synthase--time for reappraisal. Curr Drug Targets Inflamm Allergy 1, 89-108.
[36]  Ben, P., Liu, J., Lu, C., Xu, Y., Xin, Y., Fu, J., Huang, H., Zhang, Z., Gao, Y., Luo, L., Yin, Z., 2011. Curcumin promotes degradation of inducible nitric oxide synthase and suppresses its enzyme activity in RAW 264.7 cells. International Immunopharmacology 11, 179-186.
[37]  Lambris, J. D., Hajishengallis, G., Ruan, Q., Chen, Y.H., 2012. Nuclear Factor-κB in Immunity and Inflammation: The Treg and Th17 Connection. Adv Exp Med Biol 946, 207-21.
[38]  Nussler, A. K., Billiar, T.R., 1993. Inflammation, immunoregulation, and inducible nitric oxide synthase. J Leukoc Biol 54, 171-178.