Journal of Food and Nutrition Research
ISSN (Print): 2333-1119 ISSN (Online): 2333-1240 Website: http://www.sciepub.com/journal/jfnr Editor-in-chief: Prabhat Kumar Mandal
Open Access
Journal Browser
Go
Journal of Food and Nutrition Research. 2016, 4(8), 498-507
DOI: 10.12691/jfnr-4-8-3
Open AccessArticle

Improvement of Mitochondrial Function and Lipid Utilization by 3,5-dihydroxy-4-methoxybenzyl Alcohol, an Oyster-derived polyphenol, in Oleate-loaded C2C12 Myotubes

Yi-Shing Ma1, Shigeru Yoshida1, Yu Kobayashi1, Noriaki Kawanishi1, Takayuki Furukawa1, Hirotoshi Fuda1, Shu-Ping Hui1, and Hitoshi Chiba1

1Faculty of Health Sciences, Hokkaido University, Sapporo, Japan

Pub. Date: August 13, 2016

Cite this paper:
Yi-Shing Ma, Shigeru Yoshida, Yu Kobayashi, Noriaki Kawanishi, Takayuki Furukawa, Hirotoshi Fuda, Shu-Ping Hui and Hitoshi Chiba. Improvement of Mitochondrial Function and Lipid Utilization by 3,5-dihydroxy-4-methoxybenzyl Alcohol, an Oyster-derived polyphenol, in Oleate-loaded C2C12 Myotubes. Journal of Food and Nutrition Research. 2016; 4(8):498-507. doi: 10.12691/jfnr-4-8-3

Abstract

Anti-oxidative effects of the Pacific oyster-derived phenolic antioxidant, 3,5-dihydroxy-4-methoxybenzyl alcohol (DHMBA), has been documented in hepatocytes. Additionally, DHMBA-rich oyster extracts significantly attenuated obesity in a non-alcoholic steatohepatitis mouse model. Whether the administration of DHMBA might improve muscular mitochondrial function was investigated. The mouse C2C12-derived myotubes were loaded with oleic acid (400μM) and cultured for 24 hours in the presence of DHMBA (500μM) with or without electrical stimulation (ES), where ES was given as exercise mimic. The fatty acid uptake, lipid accumulation, and mitochondrial function were subsequently accessed. DHMBA and ES increased fatty acid uptake, TG contents, mitochondrial membrane potential, intracellular level of H2O2, and mitochondrial O2 consumption rate. Intracellular ATP content was significantly increased when both DHMBA and ES were loaded at the same time, suggesting their synergic action. Phosphorylated AMPKα, AMPKβ1, and acetyl-CoA carboxylase were increased by DHMBA, indicating a possible role for DHMBA for activation of metabolic adaptation system and consequent increase of fatty acid oxidation. In conclusion, DHMBA solely or in collaboration with exercise might possibly serve as a fitness food for obese persons by stimulating muscular fatty acid utilization and mitochondrial energy production. This assumption must be verified by animal experiment.

Keywords:
fatty acid uptake polyphenol mitochondrial respiration electrical stimulation C2C12 myotubes

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Figures

Figure of 10

References:

[1]  Watanabe M.; Fuda H.; Jin S.; Sakurai T.; Ohkawa F.; Hui S.P.; Takeda S.; Watanabe T.; Koike T.; Chiba H. Isolation and characterization of a phenolic antioxidant from the Pacific oyster (Crassostrea gigas). J. Agric. Food Chem. 2012, 60, 830-835.
 
[2]  Watanabe M.; Fuda H.; Jin S.; Sakurai T.; Hui S.P.; Takeda S.; Watanabe T.; Koike T.; Chiba H. A phenolic antioxidant from the Pacific oyster (Crassostrea gigas) inhibits oxidation of cultured human hepatocytes mediated by diphenyl-1-pyrenylphosphine. Food Chem. 2012, 134, 2086-2089.
 
[3]  Fuda H.; Watanabe M.; Hui S.P.; Joko S.; Okabe H.; Jin S.; Takeda S.; Miki E.; Watanabe T.; Chiba H. Anti-apoptotic effects of novel phenolic antioxidant isolated from the Pacific oyster (Crassostrea gigas) on cultured human hepatocytes under oxidative stress. Food Chem. 2015, 176, 226-233.
 
[4]  Watanabe M.; Fuda H.; Okabe H.; Joko S.; Miura Y.; Hui S.P.; Yimin; Hamaoka N.; Miki E.; Chiba H. Oyster extracts attenuate pathological changes in non-alcoholic steatohepatitis (NASH) mouse model. J. Funct. Foods. 2016, 20, 516-531.
 
[5]  Galgani J.E.; Moro C.; Ravussin E. Metabolic flexibility and insulin resistance. Am. J. Physiol-Endoc. 2008, 295, E1009-E1017.
 
[6]  Mittendorfer B. Origins of metabolic complications in obesity: adipose tissue and free fatty acid trafficking. Curr. Opin. Clin. Nutr. Metab. Care 2011, 14, 535-541.
 
[7]  Dube J.J.; Amati F.; Stefanovic-Racic M.; Toledo F.G.; Sauers S.E.; Goodpaster B.H. Exercise-induced alterations in intramyocellular lipids and insulin resistance: the athlete's paradox revisited. Am. J. Physiol. Endocrinol. Metab. 2008, 294, E882-888.
 
[8]  Watt M.J. Storing up trouble: does accumulation of intramyocellular triglyceride protect skeletal muscle from insulin resistance? Clin. Exp. Pharmacol. Physiol. 2009, 36, 5-11.
 
[9]  Shaw C.S.; Clark J.; Wagenmakers A.J. The effect of exercise and nutrition on intramuscular fat metabolism and insulin sensitivity. Annu. Rev. Nutr. 2010, 30, 13-34.
 
[10]  Szendroedi J.; Phielix E.; Roden M. The role of mitochondria in insulin resistance and type 2 diabetes mellitus. Nat. Rev. Endocrinol. 2012, 8, 92-103.
 
[11]  Muoio D.M. Intramuscular triacylglycerol and insulin resistance: Guilty as charged or wrongly accused? Biochim. Biophys. Acta 2010, 1801, 281-288.
 
[12]  Meex R.C.R.; Schrauwen-Hinderling V.B.; Moonen-Kornips E.; Schaart G.; Mensink M.; Phielix E.; van de Weijer T.; Sels J.P.; Schrauwen P.; Hesselink M.K.C. Restoration of Muscle Mitochondrial Function and Metabolic Flexibility in Type 2 Diabetes by Exercise Training Is Paralleled by Increased Myocellular Fat Storage and Improved Insulin Sensitivity. Diabetes 2010, 59, 572-579.
 
[13]  Sigal R.J.; Kenny G.P.; Wasserman D.H.; Castaneda-Sceppa C.; White R.D. Physical activity/exercise and type 2 diabetes: a consensus statement from the American Diabetes Association. Diabetes Care 2006, 29, 1433-1438.
 
[14]  O'Neill H.M.; Holloway G.P.; Steinberg G.R. AMPK regulation of fatty acid metabolism and mitochondrial biogenesis: Implications for obesity. Mol. Cell. Endocrinol. 2013, 366, 135-151.
 
[15]  Egawa T.; Tsuda S.; Oshima R.; Goto K.; Hayashi T. Activation of 5'AMP-activated protein kinase in skeletal muscle by exercise and phytochemicals. J. Phys. Fitness Sports Med. 2014, 3, 55-64.
 
[16]  Timmers S.; Konings E.; Bilet L.; Houtkooper R.H.; van de Weijer T.; Goossens G.H.; Hoeks J.; van der Krieken S.; Ryu D.; Kersten S.; Moonen-Kornips E.; Hesselink M.K.; Kunz I.; Schrauwen-Hinderling V.B.; Blaak E.E.; Auwerx J.; Schrauwen P. Calorie restriction-like effects of 30 days of resveratrol supplementation on energy metabolism and metabolic profile in obese humans. Cell Metab. 2011, 14, 612-622.
 
[17]  Nedachi T.; Fujita H.; Kanzaki M. Contractile C2C12 myotube model for studying exercise-inducible responses in skeletal muscle. Am. J. Physiol. Endocrinol. Metab. 2008, 295, E1191-1204.
 
[18]  Burch N.; Arnold A.S.; Item F.; Summermatter S.; Brochmann Santana Santos G.; Christe M.; Boutellier U.; Toigo M.; Handschin C. Electric pulse stimulation of cultured murine muscle cells reproduces gene expression changes of trained mouse muscle. PLoS One 2010, 5, e10970.
 
[19]  Nikolic N.; Bakke S.S.; Kase E.T.; Rudberg I.; Flo Halle I.; Rustan A.C.; Thoresen G.H.; Aas V. Electrical pulse stimulation of cultured human skeletal muscle cells as an in vitro model of exercise. PLoS One 2012, 7, e33203.
 
[20]  Guilherme A.; Virbasius J.V.; Puri V.; Czech M.P. Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nat. Rev. Mol. Cell Biol. 2008, 9, 367-377.
 
[21]  Stahl A.; Evans J.G.; Pattel S.; Hirsch D.; Lodish H.F. Insulin causes fatty acid transport protein translocation and enhanced fatty acid uptake in adipocytes. Dev. Cell 2002, 2, 477-488.
 
[22]  Hughey C.C.; Hittel D.S.; Johnsen V.L.; Shearer J. Respirometric oxidative phosphorylation assessment in saponin-permeabilized cardiac fibers. J. Vis. Exp. 2011, 48, 2311.
 
[23]  Salabei J.K.; Gibb A.A.; Hill B.G. Comprehensive measurement of respiratory activity in permeabilized cells using extracellular flux analysis. Nat. Protoc. 2014, 9, 421-438.
 
[24]  Mazibuko S.E.; Muller C.J.; Joubert E.; de Beer D.; Johnson R.; Opoku A.R.; Louw J. Amelioration of palmitate-induced insulin resistance in C2C12 muscle cells by rooibos (Aspalathus linearis). Phytomedicine 2013, 20, 813-819.
 
[25]  Liu H.W.; Huang W.C.; Yu W.J.; Chang S.J. Toona Sinensis ameliorates insulin resistance via AMPK and PPARγ pathways. Food Funct. 2015, 6, 1855-1864.
 
[26]  Alkhateeb H.; Bonen A. Thujone, a component of medicinal herbs, rescues palmitate-induced insulin resistance in skeletal muscle. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2010, 299, R804-812.
 
[27]  Alsted T.J.; Nybo L.; Schweiger M.; Fledelius C.; Jacobsen P.; Zimmermann R.; Zechner R.; Kiens B. Adipose triglyceride lipase in human skeletal muscle is upregulated by exercise training. Am. J. Physiol. Endocrinol. Metab. 2009, 296, E445-453.
 
[28]  Kulkarni S.S. and Canto C. The molecular targets of resveratrol. Biochim. Biophys. Acta 2015, 1852, 1114-1123.
 
[29]  McFarlan J.T.; Yoshida Y.; Jain S.S.; Han X.X.; Snook L.A.; Lally J.; Smith B.K.; Glatz J.F.; Luiken J.J.; Sayer R.A.; Tupling A.R.; Chabowski A.; Holloway G.P.; Bonen A. In vivo, fatty acid translocase (CD36) critically regulates skeletal muscle fuel selection, exercise performance, and training-induced adaptation of fatty acid oxidation. J. Biol. Chem. 2012, 287, 23502-23516.
 
[30]  Yoshida Y.; Jain S.S.; McFarlan J.T.; Snook L.A.; Chabowski A.; Bonen A. Exercise- and training-induced upregulation of skeletal muscle fatty acid oxidation are not solely dependent on mitochondrial machinery and biogenesis. J. Physiol. 2013, 591, 4415-4426.
 
[31]  Jordy A.B. and Kiens B. Regulation of exercise-induced lipid metabolism in skeletal muscle. Exp. Physiol. 2014, 99, 1586-1592.
 
[32]  Chen L.L.; Zhang H.H.; Zheng J.; Hu X.; Kong W.; Hu D.; Wang S.X.; Zhang P. Resveratrol attenuates high-fat diet-induced insulin resistance by influencing skeletal muscle lipid transport and subsarcolemmal mitochondrial beta-oxidation. Metabolism 2011, 60, 1598-1609.
 
[33]  Aoun M.; Michel F.; Fouret G.; Schlernitzauer A.; Ollendorff V.; Wrutniak-Cabello C.; Cristol J.P.; Carbonneau M.A.; Coudray C.; Feillet-Coudray C. A grape polyphenol extract modulates muscle membrane fatty acid composition and lipid metabolism in high-fat-high-sucrose diet-fed rats. Br. J. Nutr. 2011, 106, 491-501.
 
[34]  Finkel T. Signal transduction by reactive oxygen species. J. Cell Biol. 2011, 194, 7-15.
 
[35]  Horie M.; Warabi E.; Komine S.; Oh S.; Shoda J. Cytoprotective role of Nrf2 in electrical pulse stimulated C2C12 myotube. PLoS One 2015, 10, e0144835.
 
[36]  Irrcher I.; Ljubicic V.; Hood D.A. Interactions between ROS and AMP kinase activity in the regulation of PGC-1α transcription in skeletal muscle cells. Am. J. Physiol. Cell Physiol. 2009, 296, C116-123.
 
[37]  Aon M.A.; Cortassa S.; O'Rourke B. Redox-optimized ROS balance: a unifying hypothesis. Biochim. Biophys. Acta 2010, 1797, 865-877.
 
[38]  Kim H.S.; Quon M.J.; Kim J.A. New insights into the mechanisms of polyphenols beyond antioxidant properties; lessons from the green tea polyphenol, epigallocatechin 3-gallate. Redox Biol. 2014, 2, 187-195.
 
[39]  Sandoval-Acuna C.; Ferreira J.; Speisky H. Polyphenols and mitochondria: an update on their increasingly emerging ROS-scavenging independent actions. Arch. Biochem. Biophys. 2014, 559, 75-90.
 
[40]  Powers S.K. and Jackson M.J. Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production. Physiol. Rev. 2008, 88, 1243-1276.
 
[41]  Befroy D.E.; Petersen K.F.; Dufour S.; Mason G.F.; Rothman D.L.; Shulman G.I. Increased substrate oxidation and mitochondrial uncoupling in skeletal muscle of endurance-trained individuals. Proc. Natl. Acad. Sci. USA. 2008, 105, 16701-16706.
 
[42]  Meex R.C.; Schrauwen-Hinderling V.B.; Moonen-Kornips E.; Schaart G.; Mensink M.; Phielix E.; van de Weijer T.; Sels J.P.; Schrauwen P.; Hesselink M.K. Restoration of muscle mitochondrial function and metabolic flexibility in type 2 diabetes by exercise training is paralleled by increased myocellular fat storage and improved insulin sensitivity. Diabetes 2010, 59, 572-579.