Journal of Food and Nutrition Research
ISSN (Print): 2333-1119 ISSN (Online): 2333-1240 Website: http://www.sciepub.com/journal/jfnr Editor-in-chief: Prabhat Kumar Mandal
Open Access
Journal Browser
Go
Journal of Food and Nutrition Research. 2016, 4(6), 377-387
DOI: 10.12691/jfnr-4-6-6
Open AccessArticle

Antioxidant Activity of Crude Peptides Extracted from Dry-cured Jinhua Ham

Ya-ya Hu1, Lu-juan Xing1, Guang-hong Zhou1 and Wan-gang Zhang1,

1Lab of Meat Processing and Quality Control of EDU, College of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China

Pub. Date: July 07, 2016

Cite this paper:
Ya-ya Hu, Lu-juan Xing, Guang-hong Zhou and Wan-gang Zhang. Antioxidant Activity of Crude Peptides Extracted from Dry-cured Jinhua Ham. Journal of Food and Nutrition Research. 2016; 4(6):377-387. doi: 10.12691/jfnr-4-6-6

Abstract

This study was aimed to investigate the protective effects of Jinhua ham peptide extract against oxidative damage to PC12 cells induced by H2O2. Crude peptide C (CPC) presented strong scavenging activities against DPPH radicals in vitro. Exposing PC12 cells to H2O2 reduced the cell viability, the activities of antioxidant enzymes including superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px), while increased the cell apoptosis. Incubating cells with different concentrations of CPC (200 and 400 μg/mL) enhanced the cell viability and antioxidant enzyme activities. Intracellular reactive oxygen species (ROS) formation, caspase-3 activity and flow cytometric analysis revealed that CPC attenuated the cell apoptosis induced by H2O2. These cytoprotective effects of CPC on PC12 cells indicate that Jinhua ham extract might possess the ability to eliminate over-produced ROS in human.

Keywords:
Jinhua ham antioxidant activity cytoprotective effects hydrogen peroxide-induced PC12 cells

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Valko, M.; Rhodes, C. J.; Moncol, J.; Izakovic, M. M.; & Mazur, M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chemico-biological Interactions. 2006, 160(1), 1-40.
 
[2]  Halliwell, B. Oxidants and the central nervous system: some fundamental questions. Is oxidant damage relevant to Parkinson's disease, Alzheimer's disease, traumatic injury or stroke?. Acta Neurologica Scandinavica. 1989, 80(s126), 23-33.
 
[3]  Miller, J. K.; Brzezinska-Slebodzinska, E.; & Madsen, F. C. Oxidative stress, antioxidants, and animal function. Journal of Dairy Science. 1993, 76(9), 2812-2823.
 
[4]  Kmiecik, D.; Korczak, J.; Rudzińska, M.; Gramza-Michałowska, A.; Hęś, M.; & Kobus-Cisowska, J. Stabilisation of phytosterols by natural and synthetic antioxidants in high temperature conditions. Food Chemistry. 2015, 173, 966-971.
 
[5]  Kahl, R. Synthetic antioxidants: biochemical actions and interference with radiation, toxic compounds, chemical mutagens and chemical carcinogens. Toxicology, 1984, 33(3), 185-228.
 
[6]  Kahl, R.; & Kappus, H. [Toxicology of the synthetic antioxidants BHA and BHT in comparison with the natural antioxidant vitamin E]. Zeitschrift für Le0bensmittel-Untersuchung und -Forschung, 1993, 196(4), 329-338.
 
[7]  Zhou, G. H.; & Zhao, G. M. History and heritage of Jinhua ham. Animal Frontiers, 2012, 2(4), 62-67.
 
[8]  Zhao, G. M.; Wang, Y. L.; Tian, W.; Zhou, G. H.; Xu, X. L.; & Liu, Y. X. Changes of arginyl and leucyl aminopeptidase activities in biceps femoris along Jinhua ham processing. Meat Science, 2006, 74(3), 450-458.
 
[9]  Zhao, G. M.; Zhou, G. H.; Wang, Y. L.; Xu, X. L.; Huan, Y. J.; & Wu, J. Q. Time-related changes in cathepsin B and L activities during processing of Jinhua ham as a function of pH, salt and temperature. Meat Science, 2005, 70(2), 381-388.
 
[10]  Escudero, E.; Aristoy, M. C.; Nishimura, H.; Arihara, K.; & Toldrá, F. Antihypertensive effect and antioxidant activity of peptide fractions extracted from Spanish dry-cured ham. Meat Science, 2012, 91(3), 306-311.
 
[11]  Zhao, G. M.; Tian, W.; Liu, Y. X.; Zhou, G. H.; Xu, X. L.; & Li, M. Y. Proteolysis in biceps femoris during Jinhua ham processing. Meat Science, 2008, 79(1), 39-45.
 
[12]  Ahn, C. B.; Je, J. Y.; & Cho, Y. S. Antioxidant and anti-inflammatory peptide fraction from salmon byproduct protein hydrolysates by peptic hydrolysis. Food Research International, 2012, 49(1), 92-98.
 
[13]  Chi, C. F.; Wang, B.; Wang, Y. M.; Zhang, B.; & Deng, S. G. Isolation and characterization of three antioxidant peptides from protein hydrolysate of bluefin leatherjacket (Navodon septentrionalis) heads. Journal of Functional Foods, 2015, 12, 1-10.
 
[14]  Ghribi, A. M.; Sila, A.; Przybylski, R.; Nedjar-Arroume, N.; Makhlouf, I.; Blecker, C.; & Besbes, S. Purification and identification of novel antioxidant peptides from enzymatic hydrolysate of chickpea (Cicer arietinum L.) protein concentrate. Journal of Functional Foods, 2015, 12, 516-525.
 
[15]  Himali, S.; Zhang, W. G.; Lee, J. E.; & Ahn, D. U. Egg yolk Phosvitin and functional phosphopeptides-Review. Journal of Food Science, 2011, 76(7), R143-R150.
 
[16]  Escudero, E.; Mora, L.; Fraser, P. D.; Aristoy, M. C.; & Toldrá, F. Identification of novel antioxidant peptides generated in Spanish dry-cured ham. Food Chemistry, 2013, 138(2), 1282-1288.
 
[17]  Zhu, C. Z.; Zhang, W. G.; Zhou, G. H.; Xu, X. L.; Kang, Z. L.; & Yin, Y. Isolation and identification of antioxidant peptides from Jinhua Ham. Journal of Agricultural and Food Chemistry, 2013, 61(6), 1265-1271.
 
[18]  You, L.; Zhao, M.; Regenstein, J. M.; & Ren, J. Purification and identification of antioxidative peptides from loach (Misgurnus anguillicaudatus) protein hydrolysate by consecutive chromatography and electrospray ionization-mass spectrometry. Food Research International, 2010, 43(4), 1167-1173.
 
[19]  Bamdad, F.; Ahmed, S.; & Chen, L. Specifically designed peptide structures effectively suppressed oxidative reactions in chemical and cellular systems. Journal of Functional Foods, 2015, 18, 35-46.
 
[20]  Zhou, G. H.; & Zhao, G. M. Biochemical changes during processing of traditional Jinhua ham. Meat Science, 2007, 77(1), 114-120.
 
[21]  Zhu, C. Z.; Zhang, W. G.; Kang, Z. L.; Zhou, G. H.; & Xu, X. L. Stability of an antioxidant peptide extracted from Jinhua ham. Meat Science, 2014, 96(2), 783-789.
 
[22]  Shi, Y.; Kovacs-Nolan, J.; Jiang, B.; Tsao, R.; & Mine, Y. Peptides derived from eggshell membrane improve antioxidant enzyme activity and glutathione synthesis against oxidative damage in Caco-2 cells. Journal of Functional Foods, 2014, 11, 571-580.
 
[23]  Chi, C. F.; Wang, B.; Deng, Y. Y.; Wang, Y. M.; Deng, S. G.; & Ma, J. Y. Isolation and characterization of three antioxidant pentapeptides from protein hydrolysate of monkfish (Lophius litulon) muscle. Food Research International, 2014, 55, 222-228.
 
[24]  Sarmadi, B. H.; & Ismail, A. Antioxidative peptides from food proteins: a review. Peptides, 31(10), 2010, 1949-1956.
 
[25]  Samaranayaka, A. G.; & Li-Chan, E. C. Food-derived peptidic antioxidants: A review of their production, assessment, and potential applications. Journal of Functional Foods, 2011, 3(4), 229-254.
 
[26]  Chandra, J.; Samali, A.; & Orrenius, S. Triggering and modulation of apoptosis by oxidative stress. Free Radical Biology and Medicine, 2000, 29(3), 323-333.
 
[27]  Jia, N.; Li, T.; Diao, X.; & Kong, B. Protective effects of black currant (Ribes nigrum L.) extract on hydrogen peroxide-induced damage in lung fibroblast MRC-5 cells in relation to the antioxidant activity. Journal of Functional Foods, 2014, 11, 142-151.
 
[28]  Kong, B.; Peng, X.; Xiong, Y. L.; & Zhao, X. Protection of lung fibroblast MRC-5 cells against hydrogen peroxide-induced oxidative damage by 0.1–2.8kDa antioxidative peptides isolated from whey protein hydrolysate. Food Chemistry, 2012, 135(2), 540-547.
 
[29]  Chyau, C. C.; Chu, C. C.; Chen, S. Y.; & Duh, P. D. Djulis (Chenopodiun formosaneum) and its bioactive compounds protect against oxidative stress in human HepG2 cells. Journal of Functional Foods, 2015, 18, 159-170.
 
[30]  Schafer, F. Q.; & Buettner, G. R. Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radical Biology and Medicine, 2011, 30(11), 1191-1212.
 
[31]  Caprioli, R. M.; Farmer, T. B.; & Gile, J. Molecular imaging of biological samples: localization of peptides and proteins using MALDI-TOF MS. Analytical Chemistry, 1997, 69(23), 4751-4760.
 
[32]  Xu, W.; Xu, X.; Zhou, G.; Wang, D.; & Li, C. Changes of intramuscular phospholipids and free fatty acids during the processing of nanjing dry-cured duck. Food Chemistry, 2008, 110(2), 279-84.