Journal of Food and Nutrition Research
ISSN (Print): 2333-1119 ISSN (Online): 2333-1240 Website: http://www.sciepub.com/journal/jfnr Editor-in-chief: Prabhat Kumar Mandal
Open Access
Journal Browser
Go
Journal of Food and Nutrition Research. 2016, 4(6), 361-368
DOI: 10.12691/jfnr-4-6-4
Open AccessArticle

Biological Activities of Fructooligosaccharides Produced by Aspergillus aculeatus in Mice Fed a High-fat Diet and Caco-2 Cell

Ok-Kyung Kim1, 2, Jeongjin Park1, 2, Ho-Geun Yoon3, Yanghee You1, 2, Yi Seul Seo4, Jae Hwan Kim4, Kyung-Chul Choi5, Yoo-Hyun Lee6, Jeongmin Lee7 and Woojin Jun1, 2,

1Division of Food and Nutritional Science, Chonnam National University, Gwangju61186, Republic of Korea

2Research Institute for Human Ecology, Chonnam National University, Gwangju61186, Republic of Korea

3Department of Biochemistry and Molecular Biology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul 03722, Republic of Korea

4Neo Cremar Co., Sungnam, 13229, Republic of Korea

5Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea

6Department of Food and Nutrition, University of Suwon, Suwon 18323, Republic of Korea

7Department of Medical Nutrition, Kyung Hee University, Yongin 17104, Republic of Korea

Pub. Date: July 05, 2016

Cite this paper:
Ok-Kyung Kim, Jeongjin Park, Ho-Geun Yoon, Yanghee You, Yi Seul Seo, Jae Hwan Kim, Kyung-Chul Choi, Yoo-Hyun Lee, Jeongmin Lee and Woojin Jun. Biological Activities of Fructooligosaccharides Produced by Aspergillus aculeatus in Mice Fed a High-fat Diet and Caco-2 Cell. Journal of Food and Nutrition Research. 2016; 4(6):361-368. doi: 10.12691/jfnr-4-6-4

Abstract

We investigated the effects of the dietary supplement of fructooligosaccharides (FOS) on intestinal bacteria, blood cholesterol and mineral absorption in the Balb/c mice fed a high-fat diet. Mice were divided into four groups: Normal control (Balb/c mice fed normal diet), High fat control (Balb/c mice fed 60% fat diet), HF-FOS 5% (Balb/c mice fed 60% fat and 5% FOS diet), and HF-FOS 10% (Balb/c mice fed 60% fat and 10% FOS diet). We used an in vitro assay to evaluate whether the direct effects of FOS on calcium and magnesium transport improve absorption in the differentiated Caco-2 cell. The dietary supplementation with FOS resulted in a significant increase in Lactobacillus and Bifidobacterium in the feces and large intestine compared with the high fat control group. We found that dietary supplementation with FOS suppressed weight gain, hypercholesterolemia and hypertriglyceridemia induction by the high-fat diet although food consumption by the HF-FOS 5% and HF-FOS 10% groups was higher compared to the high fat control. Furthermore, the blood concentrations of calcium and magnesium that were lowered by the high fat diet were significantly increased in the HF-FOS 5% and HF-FOS 10% groups even though the absorption of calcium and magnesium following FOS treatment was low in the in vitro assay. Overall, these results suggest that dietary supplementation with FOS can help prevent a wide range of ailments induced by chronic high fat diet intake.

Keywords:
fructooligosaccharides intestinal bacteria high fat diet cholesterol mineral absorption

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Round, J.L.; Mazmanian, S.K. The gut microbiota shapes intestinal immune responses during health and disease. Nat. Rev. Immunol. 2009, 9, 313-323.
 
[2]  Grizard, D.; Barthomeuf, C. Non-digestible oligosaccharides used as prebiotic agents: mode of production and beneficial effects on animal and human health. Reprod. Nutr. Dev. 1999, 39, 563-588.
 
[3]  Gibson, G.R.; Roberfroid, M.B. Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J. Nutr. 1995, 125, 1401-1412.
 
[4]  Bornet, F.R.; Brouns, F.; Tashiro, Y.; Duvillier, V. Nutritional aspects of short-chain fructooligosaccharides: natural occurrence, chemistry, physiology and health implications. Dig. Liver Dis. 2002, 34, 111-120.
 
[5]  Park, Y.K.; Almeida, M.M. Production of fructooligosaccharides from sucrose by a transfructosylase from Aspergillus niger. World J. Microbiol. Biotechnol. 1991, 7, 331-334.
 
[6]  Xu, Z.R.; Hu, C.H.; Xia, M.S.; Zhan, X.A.; Wang, M.Q. Effects of dietary fructooligosaccharide on digestive enzyme activities, intestinal microflora and morphology of male broilers. Poult. Sci. 2003, 82, 1030-1036.
 
[7]  Hsu, C.K.; Liao, J.W.; Chung, Y.C.; Hsieh, C.P.; Chan, Y.C. Xylooligosaccharides and fructooligosaccharides affect the intestinal microbiota and precancerous colonic lesion development in rats. J. Nutr. 2004, 134, 1523-1528.
 
[8]  Ten, Bruggencate, S.J.; Bovee-Oudenhoven, I.M.; Lettink-Wissink, M.L.; Van, der, Meer, R. Dietary fructo-oligosaccharides dose-dependently increase translocation of salmonella in rats. J. Nutr. 2003, 133, 2313-2318.
 
[9]  Delzenne, N.; Aertssens, J.; Verplaetse, H.; Roccaro, M.; Roberfroid, M. Effect of fermentable fructo-oligosaccharides on mineral, nitrogen and energy digestive balance in the rat. Life Sci. 1995, 57, 1579-1587.
 
[10]  Ohta, A. Prevention of osteoporosis by foods and dietary supplements. The effect of fructooligosaccharides (FOS) on the calcium absorption and bone. Clin. Calcium. 2006, 16, 1639-1645.
 
[11]  Nakamura, Y.; Natsume, M.; Yasuda, A.; Ishizaka, M.; Kawahata, K.; Koga, J. Fructooligosaccharides suppress high-fat diet-induced fat accumulation in C57BL/6J mice. Biofactors 2011, DOI: 10.1002
 
[12]  Rajkumar, H.; Kumar, M.; Das, N.; Kumar, S.N.; Challa, H.R.; Nagpal, R. Effect of Probiotic Lactobacillus salivarius UBL S22 and Prebiotic Fructo-oligosaccharide on Serum Lipids, Inflammatory Markers, Insulin Sensitivity, and Gut Bacteria in Healthy Young Volunteers: A Randomized Controlled Single-Blind Pilot Study. J. Cardiovasc. Pharmacol. Ther. 2015, 20, 289-298.
 
[13]  Ooi, L.G.; Liong, M.T. Cholesterol-lowering effects of probiotics and prebiotics: a review of in vivo and in vitro findings. Int. J. Mol. Sci. 2010, 11, 2499-2522.
 
[14]  Hildebrandt, M.A.; Hoffmann, C.; Sherrill-Mix, S.A.; Keilbaugh, S.A.; Hamady, M.; Chen, Y.Y.; Knight, R.; Ahima, R.S.; Bushman, F.; Wu, G.D. High-fat diet determines the composition of the murine gut microbiome independently of obesity. Gastroenterology 2009, 137, 1716-1724.
 
[15]  Cani, P.D.; Delzenne, N.M.; Amar, J.; Burcelin, R. Role of gut microflora in the development of obesity and insulin resistance following high-fat diet feeding. Pathol. Biol. (Paris) 2008, 56, 305-309.
 
[16]  Cani, P.D.; Amar, J.; Iglesias, M.A.; Poggi, M.; Knauf, C.; Bastelica, D.; Neyrinck, A.M.; Fava, F.; Tuohy, K.M.; Chabo, C.; Waget, A.; Delmée, E.; Cousin, B.; Sulpice, T.; Chamontin, B.; Ferrières, J.; Tanti, J.F.; Gibson, G.R.; Casteilla, L.; Delzenne, N.M.; Alessi, M.C.; Burcelin, R. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 2007, 56, 1761-1772.
 
[17]  Cani, P.D.; Neyrinck, A.M.; Fava, F.; Knauf, C.; Burcelin, R.G.; Tuohy, K.M.; Gibson, G.R.; Delzenne, N.M. Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia. Diabetologia 2007, 50, 2374-2383.
 
[18]  Dong, J.L.; Zhu, Y.Y.; Li, L.; Shen, R.L.; Li, H. Effect of oat soluble and insoluble β-glucan on lipid metabolism and intestinal lactobacillus in high-fat diet-induced obese mice. J. Food Nutr. Res. 2014, 2, 510-516.
 
[19]  Tanida, M.; Shen, J.; Maeda, K.; Horii, Y.; Yamano, T.; Fukushima, Y.; Nagai, K. High-fat diet-induced obesity is attenuated by probiotic strain Lactobacillus paracasei ST11 (NCC2461) in rats. Obes. Res. Clin. Pract. 2008, 2, I-II.
 
[20]  An, H.M.; Park, S.Y.; Lee, do, K.; Kim, J.R.; Cha, M.K.; Lee, S.W.; Lim, H.T.; Kim, K.J.; Ha, N.J. Antiobesity and lipid-lowering effects of Bifidobacterium spp. in high fat diet-induced obese rats. Lipids Health Dis. 2011, 12, 116.
 
[21]  Woting, A.; Pfeiffer, N.; Loh, G.; Klaus, S.; Blaut, M. Clostridium ramosum promotes high-fat diet-induced obesity in gnotobiotic mouse models. MBio. 2014, 5, e01530-14.
 
[22]  Ooi, L.G.; Liong, M.T. Cholesterol-lowering effects of probiotics and prebiotics: a review of in vivo and in vitro findings. Int. J. Mol. Sci. 2010, 11, 2499-2522.
 
[23]  Lambert, J.M.; Bongers, R.S.; de, Vos, W.M.; Kleerebezem, M. Functional analysis of four bile salt hydrolase and penicillin acylase family members in Lactobacillus plantarum WCFS1. Appl. Environ. Microbiol. 2008, 74, 4719-4726.
 
[24]  Liong, M.T.; Shah, N.P. Effects of a Lactobacillus casei synbiotic on serum lipoprotein, intestinal microflora, and organic acids in rats. J. Dairy Sci. 2006, 89, 1390-1399.
 
[25]  Pereira, D.I.; Gibson, G.R. Cholesterol assimilation by lactic acid bacteria and bifidobacteria isolated from the human gut. Appl. Environ. Microbiol. 2002, 68, 4689-4693.
 
[26]  Gilliland, S.E.; Nelson, C.R.; Maxwell, C. Assimilation of cholesterol by Lactobacillus acidophilus. Appl. Environ. Microbiol. 1985, 49, 377-381.
 
[27]  Foldes, J.; Shih, M.S.; Levy, J. Bone structure and calcium metabolism in obese Zucker rats. Int. J. Obes. Relat. Metab. Disord. 1992, 16, 95-102.
 
[28]  Zamboni, G.; Soffiati, M.; Giavarina, D.; Tató, L. Mineral metabolism in obese children. Acta. Paediatr. Scand. 1988, 77, 741-746.
 
[29]  Zemel, M.B.; Thompson, W.; Milstead, A.; Morris, K.; Campbell, P. Calcium and dairy acceleration of weight and fat loss during energy restriction in obese adults. Obes. Res. 2004, 12, 582-590.
 
[30]  Sabater-Molina, M.; Larqué, E.; Torrella, F.; Zamora, S. Dietary fructooligosaccharides and potential benefits on health. J. Physiol. Biochem. 2009, 65, 315-328.
 
[31]  Scholz-Ahrens, K.E.; Schrezenmeir, J. Inulin and oligofructose and mineral metabolism: the evidence from animal trials. J. Nutr. 2007, 137, 2513S-2523S.
 
[32]  Takahara, S.; Morohashi, T.; Sano, T.; Ohta, A.; Yamada, S.; Sasa, R. Fructooligosaccharide consumption enhances femoral bone volume and mineral concentrations in rats. J. Nutr. 2000, 130, 1792-1795.