Journal of Food and Nutrition Research
ISSN (Print): 2333-1119 ISSN (Online): 2333-1240 Website: http://www.sciepub.com/journal/jfnr Editor-in-chief: Prabhat Kumar Mandal
Open Access
Journal Browser
Go
Journal of Food and Nutrition Research. 2016, 4(5), 296-302
DOI: 10.12691/jfnr-4-5-5
Open AccessArticle

Effect of Pasteurization, Freeze-drying and Spray Drying on the Fat Globule and Lipid Profile of Human Milk

A. Cavazos-Garduño1, J.C. Serrano-Niño1, J.R. Solís-Pacheco1, J.A Gutierrez-Padilla2, O. González-Reynoso1, H.S. García2 and B.R. Aguilar-Uscanga1,

1Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Boulevard Marcelino García Barragán 1421, 44420. Guadalajara, Jalisco. México

2UNIDA, Instituto Tecnológico de Veracruz, Calz. Miguel Angel de Quevedo 2779, 91897, Veracruz, Ver., México

Pub. Date: June 14, 2016

Cite this paper:
A. Cavazos-Garduño, J.C. Serrano-Niño, J.R. Solís-Pacheco, J.A Gutierrez-Padilla, O. González-Reynoso, H.S. García and B.R. Aguilar-Uscanga. Effect of Pasteurization, Freeze-drying and Spray Drying on the Fat Globule and Lipid Profile of Human Milk. Journal of Food and Nutrition Research. 2016; 4(5):296-302. doi: 10.12691/jfnr-4-5-5

Abstract

Human milk is the ideal food to nourish newborn babies; it contains important nutrients: proteins, carbohydrates, fat, vitamins and minerals, which are needed to provide agood health to the infants. Milk fat provides about 50% of energy to infants and its fatty acids are essential for brain and retina development. Therefore, analysis of the lipid fraction of human milk is an important task, especially when this milk is processed. The objective of this research was to study the effect of pasteurization, freeze-drying and spray drying on some characteristics of human milk fat. The fatty acid profile was analyzed by HPLC and gas chromatography. Fat content, globule size and distribution were measured. The HPLC method for the analysis of fatty acids showed accuracy, precision and linearity in the concentration range studied. Non-significant differences in fat content between the different processes were found; however, there was a decrease of 23% in the fat content of spray dried milk. The fat mean globule size decreased considerably in all treatments, varying from 2138 to 529 nm. The size distribution of fat globules increased during pasteurization and drying from 0.24 in raw milk to 0.78 in pasteurized milk. With respect to the fatty acid profile, we found that human milk samples had an elevated content of palmitic (27%), and oleic (30%) acids and significant variations were observed in the pasteurized samples for oleic and linoleic acid. Preservation processes applied to human milk caused a decrease on the fat globule diameter; the change in size increased the surface area and could improve the bioavailability of the fat components. This is the first report of human milk drying as a preservation method.

Keywords:
human milk fat fatty acids pasteurization lyophilization spray drying

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Figures

Figure of 2

References:

[1]  Gartner, L. M., Morton, J., Lawrence, R. A., Naylor, A. J., O'Hare, D., Schanler, R. J. and Eidelman, A. I. “Breastfeeding and the use of human milk”. Pediatrics, 115(2), 496-506. 2005.
 
[2]  King C. and Jones E. The benefits of human milk for the preterm baby. In: Jones E., King C. (eds.), Feeding and nutrition in the preterm Infant, Elsevier/Churchill Livingstone, London. 2005.
 
[3]  Ballard, O., & Morrow, A. L. “Human milk composition: nutrients and bioactive factors”. Pediatric Clinics of North America, 60(1), 49-74. 2013.
 
[4]  Vieira, A. A., Soares, F. V. M., Pimenta, H. P., Abranches, A. D. and Moreira, M. E. L. “Analysis of the influence of pasteurization, freezing/thawing, and offer processes on human milk's macronutrient concentrations”. Early human development, 87(8), 577-580. 2011.
 
[5]  Samur, G., Topcu, A. and Turan, S. “Trans fatty acids and fatty acid composition of mature breast milk in turkish women and their association with maternal diet’s”. Lipids, 44(5), 405-413. 2009.
 
[6]  Jensen R.G., Bitman J., Carlson S. E., Couch S. C., and Hamosh M. N. D.S. Milk lipids A. Human milk lipids. In: Jensen, R. G. (Ed.), Handbook of milk composition. San Diego: Academic press. 1995, 495-575.
 
[7]  Heid, H. W., and Keenan, T. W. “Intracellular origin and secretion of milk fat globules”. European Journal of Cell Biology, 84(2), 245-258. 2005.
 
[8]  Lopez, C., Briard-Bion, V., Ménard, O., Beaucher, E., Rousseau, F., Fauquant, J., Leconte, N.and Robert, B. “Fat globules selected from whole milk according to their size: Different compositions and structure of the biomembrane, revealing sphingomyelin-rich domains”. Food Chemistry, 125(2), 355-368. 2011.
 
[9]  Fong, B. Y., Norris, C. S., and MacGibbon, A. K. “Protein and lipid composition of bovine milk-fat-globule membrane”. International Dairy Journal, 17(4), 275-288. 2007.
 
[10]  Carlson, S. E., Werkman, S. H., Peeples, J. M., Cooke, R. J., and Tolley, E. A. “Arachidonic acid status correlates with first year growth in preterm infants”. Proceedings of the National Academy of Sciences, 90(3), 1073-1077. 1993.
 
[11]  Keenan T.W. and Patton S. The Milk Lipid Globule Membrane.In Jensen, R. G. (Ed.), Handbook of milk composition. San Diego: Academic press., 1995, 5-50.
 
[12]  Zou, X. Q., Guo, Z., Huang, J. H., Jin, Q. Z., Cheong, L. Z., Wang, X. G. and Xu, X. B. “Human milk fat globules from different stages of lactation: a lipid composition analysis and microstructure characterization”. Journal of Agricultural and Food Chemistry, 60(29), 7158-7167. 2010
 
[13]  Gutnikov, G. “Fatty acid profiles of lipid samples”. Journal of Chromatography B: Biomedical Sciences and Applications, 671(1), 71-89. 1995.
 
[14]  Metha, N. R., Hamosh, M., Bitman, J. and Wood, D. L. “Adherence of medium-chain fatty acids to tube feeding of human milk during gavage feeding”. Journal of Pediatrics, 112, 474-476. 1998.
 
[15]  Lima, E. S., and Abdalla, D. S. P. “High-performance liquid chromatography of fatty acids in biological samples”. Analytica Chimica Acta, 465(1), 81-91. 2002.
 
[16]  Grotto, D., Santa Maria, L., Valentini, J., Paniz, C., Schmitt, G., Garcia, S. C., Juarez-Pomblum, V., Rocha, J.B.T. and Farina, M. “Importance of the lipid peroxidation biomarkers and methodological aspects for malondialdehyde quantification”. Quimica Nova, 32(1), 169-174. 2009.
 
[17]  Xia, E. Q., Song, Y., Ai, X. X., Guo, Y. J., Xu, X. R., and Li, H. B. “A new high-performance liquid chromatographic method for the determination and distribution of linalool in Michelia alba”. Molecules, 15(7), 4890-4897. 2010.
 
[18]  Czank, C., Simmer, K., and Hartmann, P. E. “Simultaneous pasteurization and homogenization of human milk by combining heat and ultrasound: effect on milk quality”. Journal of Dairy Research, 77(02), 183-189. 2010.
 
[19]  Miller, G. L. “Use of dinitrosalicylic acid reagent for determination of reducing sugar”. Analytical Chemistry, 31(3), 426-428. 1959.
 
[20]  Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randall, R. J. “Protein measurement with the Folin phenol reagent”. Journal of Biological Chemistry, 193(1), 265-275. 1951.
 
[21]  Folch, J., Lees, M., & Sloane-Stanley, G. H. “A simple method for the isolation and purification of total lipids from animal tissues”. Journal of Biological Chemistry, 226(1), 497-509. 1957.
 
[22]  Garcia, H. S., Kim, I. H., Lopez-Hernandez, A. and Hill Jr, C. G. “Enrichment of lecithin with n-3 fatty acids by acidolysis using immobilized phospholipase A1”. Grasas y Aceites, 59(4), 368-374. 2008.
 
[23]  Cavazos-Garduno, A., Flores, A. O., Serrano-Niño, J. C., Martínez-Sanchez, C. E., Beristain, C. I., and García, H. S. “Preparation of betulinic acid nanoemulsions stabilized by ω-3 enriched phosphatidylcholine”. Ultrasonics Sonochemistry, 24: 204-213. 2015.
 
[24]  Miranda, M., Gormaz, M., Romero, F. J.and Silvestre, D. “Estabilidad de la capacidad antioxidante y pH en leche humana refrigerada durante 72 horas: estudio longitudinal”. Nutrición Hospitalaria, 26(4), 722-728. 2011.
 
[25]  Ogundele, M. O. “Effects of storage on the physicochemical and antibacterial properties of human milk”. British Journal of Biomedical Science, 59(4), 205-211. 2002.
 
[26]  Abranches, A. D., Soares, F. V., G Junior, S. C., and Moreira, M. E. L. “Freezing and thawing effects on fat, protein, and lactose levels of human natural milk administered by gavage and continuous infusión”. Jornal de Pediatria, 90(4), 384-388. 2014.
 
[27]  García-Lara, N. R., Escuder-Vieco, D., García-Algar, O., De la Cruz, J., Lora, D., and Pallás-Alonso, C. “Effect of freezing time on macronutrients and energy content of breastmilk”. Breastfeeding Medicine, 7(4), 295-301. 2012.
 
[28]  Chang, N., Jung, J. A., Kim, H., Jo, A., Kang, S., Lee, S. W., and Jung, B. M. “Macronutrient composition of human milk from Korean mothers of full term infants born at 37-42 gestational weeks”. Nutrition Research and Practice, 9(4), 433-438. 2015.
 
[29]  Mitoulas, L. R., Kent, J. C., Cox, D. B., Owens, R. A., Sherriff, J. L. and Hartmann, P. E. “Variation in fat, lactose and protein in human milk over 24h and throughout the first year of lactation”. British Journal of Nutrition, 88(01), 29-37. 2002.
 
[30]  Bauer, J., and Gerss, J.”Longitudinal analysis of macronutrients and minerals in human milk produced by mothers of preterm infants”. Clinical Nutrition, 30(2), 215-220. 2011.
 
[31]  Jensen, R. G. “Lipids in human milk”. Lipids, 34(12), 1243-1271. 1999.
 
[32]  Chang, Y. C., Chen, C. H., and Lin, M. C. “The macronutrients in human milk change after storage in various containers”. Pediatrics & Neonatology, 53(3), 205-209. 2012.
 
[33]  Rogers, S. P., Hicks, P. D., Hamzo, M., Veit, L. E. and Abrams, S. A. “Continuous feedings of fortified human milk lead to nutrient losses of fat, calcium and phosphorous”. Nutrients, 2(3), 230-240. 2010.
 
[34]  Lopez, C., & Ménard, O. “Human milk fat globules: polar lipid composition and in situ structural investigations revealing the heterogeneous distribution of proteins and the lateral segregation of sphingomyelin in the biological membrane”. Colloids and Surfaces B: Biointerfaces, 83(1), 29-41. 2011.
 
[35]  Lopez, C. “Milk fat globules enveloped by their biological membrane: Unique colloidal assemblies with a specific composition and structure”. Current Opinion in Colloid & Interface Science, 16(5), 391-404. 2011.
 
[36]  Thomaz, A. C. P., Goncalves, A. L. and Martinez, F. E. “Effects of human milk homogenization on fat absorption in very low birth weight infants”. Nutrition Research, 19(4), 483-492. 1999.
 
[37]  Sigfridsson, Kalle, Anders J. Lundqvist, and Marie Strimfors. “Particle size reduction for improvement of oral absorption of the poorly soluble drug UG558 in rats during early development.” Drug development and industrial pharmacy. 35 (12), 1479-1486. 2009
 
[38]  Ménard, O.; Ahmad, S.; Rousseau, F.; Briard-Bion, V.; Gaucheron, F.; and Lopez, C. “Buffalo vs. cow milk fat globules: Size distribution, zeta-potential, compositions in total fatty acids and in polar lipids from the milk fat globule membrane”. Food Chem. 120, 544-551. 2010.
 
[39]  Wu, T. C., Lau, B. H., Chen, P. H., Wu, L. T., and Tang, R. B. “Fatty acid composition of Taiwanese human milk”. Journal of the Chinese Medical Association, 73(11), 581-588. 2010.
 
[40]  Haddad, I., Mozzon, M. and Frega, N. G. “Trends in fatty acids positional distribution in human colostrum, transitional, and mature milk”. European Food Research and Technology, 235(2), 325-332. 2012.
 
[41]  Innis, S. M., Akrabawi, S. S., Diersen-Schade, D. A., Dobson, M. V. and Guy, D. G. “Visual acuity and blood lipids in term infants fed human milk or formulae”. Lipids, 32(1), 63-72. 1997.
 
[42]  Antonakou, A., Skenderi, K. P., Chiou, A., Anastasiou, C. A., Bakoula, C., & Matalas, A. L. “Breast milk fat concentration and fatty acid pattern during the first six months in exclusively breastfeeding Greek women”. European journal of nutrition, 52(3), 963-973. 2013.
 
[43]  Garcia, H. S., Reyes, H. R., Malcata, F. X., Hill Jr, C. G. and Amundson, C. H. “Determination of the major free fatty acids in milkfat using a three-component mobile phase for HPLC analysis”. Milchwissenschaft, 45(12), 757-759. 1990
 
[44]  Chen, S. H., & Chuang, Y. J. “Analysis of fatty acids by column liquid chromatography”. Analytica Chimica Acta, 465(1), 145-155. 2002.
 
[45]  You, J., Zhu, F., Zhao, W., Zhao, X. E., Suo, Y. and Liu, S. “Analysis of saturated free fatty acids from pollen by HPLC with fluorescence detection”. European Journal of Lipid Science and Technology, 109(3), 225-236. 2007
 
[46]  Guarrasi, V., Mangione, M. R., Sanfratello, V., Martorana, V. and Bulone, D. “Quantification of Underivatized Fatty Acids From Vegetable Oils by HPLC with UV Detection”. Journal of Chromatographic Science, 48:663-668. 2010.