Journal of Food and Nutrition Research
ISSN (Print): 2333-1119 ISSN (Online): 2333-1240 Website: Editor-in-chief: Prabhat Kumar Mandal
Open Access
Journal Browser
Journal of Food and Nutrition Research. 2016, 4(3), 170-177
DOI: 10.12691/jfnr-4-3-7
Open AccessArticle

Isolation and Identification of Lactic Acid Bacteria from Human Milk with Potential Probiotic Role

Serrano-Niño J.C1, Solís-Pacheco J.R1, Gutierrez-Padilla J.A1, Cobián-García A1, Cavazos-Garduño A1 and González-Reynoso O., Aguilar-Uscanga B.R1,

1Laboratorio de Microbiología Industrial. Centro Universitario de Ciencias Exactas e Ingeniería. Universidad de Guadalajara, Jalisco, México. Boulevard Marcelino García Barragán #1421, Col. Olímpica. Guadalajara, Jalisco C.P. 44430 México

Pub. Date: April 20, 2016

Cite this paper:
Serrano-Niño J.C, Solís-Pacheco J.R, Gutierrez-Padilla J.A, Cobián-García A, Cavazos-Garduño A and González-Reynoso O., Aguilar-Uscanga B.R. Isolation and Identification of Lactic Acid Bacteria from Human Milk with Potential Probiotic Role. Journal of Food and Nutrition Research. 2016; 4(3):170-177. doi: 10.12691/jfnr-4-3-7


In recent years, there has been an increasing interest in the field of research into the characterization of new probiotics with potential application to the health and disease prevention. Therefore, the aim of this study is to isolate and identify bacteria in human colostrum and mature milk to analyze its possible probiotic potential. We isolated and identified ten strains of bacteria in human mature milk, by molecular biology; from which, five of these strains were selected to evaluate their ability to survive in vitro simulated conditions of gastrointestinal stress, the antimicrobial effect, adhesion capacity and resistance to different pHs and temperatures. The results showed that three of the five selected strains, identified as Lactobacillus fermentum JCM 3, TW56 Leuconostoc mesenteroides and Lactobacillus delbrueckii subsp. bulgaricus, were resistant to digestive enzymes, showed resistance to low pH values (2 and 3) having adhesion capacity and viability at temperatures of 40 °C. Therefore, these bacteria may could be considered as potential probiotics for the pharmaceutical and food industry.

probiotics isolation human milk lactic acid bacteria

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


[1]  Arboleya, S., Ruas-Madiedo, P., Margolles, A, Solis, G., Salminen, S., De los Reyes Gavilan, C. and Gueimonde, M, “Characterization and in vitro properties of potentially probiotic Bifidobacterium strains isolated from breast-milk,” International Journal of Food Microbiology, 149 (1). 28-36. September 2011.
[2]  Beasley, S.S. and Saris, P.E.J, “Nisin-producing Lactococcus lactis strains isolated from human milk,” Applied and Environmental Microbiology, 70 (8). 5051-5053. August 2004.
[3]  Caplan, M.S. and Jilling, T., “Neonatal necrotizing enterocolitis: possible role of probiotic supplementation,” Journal of Pediatric Gastroenterology and Nutrition 30(suppl 2). S18-S22. March 2000.
[4]  Conway, P.L., Gorbach, S. L. and Goldin, B.R, “Survival of lactic acid bacteria in the human stomach and adhesion to intestinal cells,” Journal of Dairy Science, 70 (1). 1-12. January 1987.
[5]  De-Vries, M.C., Vaughan, E.E., Kleerebezem, M. and De Vos, W.M, “Lactobacillus plantarum -survival, functional and potential probiotic properties in the human intestinal tract,” International Dairy Journal, 16 (9). 1018-1028. September 2009.
[6]  Draksler, D., Gonzales, S. and Oliver, G, “Preliminary assays for the development of a probiotic for goats,” Reproduction Nutrition Development, 44 (5). 397-405. September 2004.
[7]  Dunne, C., O'Mahony, L., Murphy, L., Thornton, G., Morrisey, D., O'Halloran, S., Feeney, M., Flynn, S., Fitzgerald, G., Daly, C., Kiely, B., O'Sullivan, G.C., Shanahan, F. and Collins, J.K, “In vitro selection criteria for probiotic bacteria of human origin: correlation with in vivo findings,” American Journal of Clinical Nutrition, 73 (2). 386S-392S. February 2003.
[8]  Du Toit, M.., Franz, C.M.A.P., Dicks, L.M.T., Shillinger, U., Haberer, P., Warlies, B., Ahrens, F. and Holzapfel, W.H, “Characterization and selection of probiotic lactobacilli for a preliminary mini pig feeding trial and their effect on serum cholesterol levels, feces pH and feces moisture content,” International Journal of Food Microbiology, 40 (1-2). 93-104. March 1998.
[9]  Fernández, L., Delgado, S., Herrero, H., Maldonado, A. and Rodríguez, J.M, “The bacteriocin nisin, an effective agent for the treatment of staphylococcal mastitis during lactation,” Journal of Human Lactation, 24 (3). 311-316. August 2008.
[10]  Forestier, C., De Champs, C., Vatoux, C. and Joly B, “Probiotic activities of Lactobacillus casei rhamnosus: in vitro adherence to intestinal cells and antimicrobial properties,” Research in Microbiology. 152 (2001). 167-173. March 2001.
[11]  Gewolb, I.H., Schwalbe, R.S., Taciak, V.L., Harrison, T.S. and Panigrahi, P., “Stool microflora in extremely low birth weight infants,” Archive of Diseases in Childhood-Fetal and Neonatal Edition 80 (3). F167-F173. November 1988.
[12]  Guarner, F. and Malagelada, J.R, “Gut flora in health and disease,” The Lancet 361(9356). 512-519. Febraury 2003.
[13]  Heikkila, M.P. and Saris, P.E.J, “Inhibition of Staphylococcus aureus by the commensal bacteria of human milk,” Journal of Applied Microbiology, 95 (3). 471-478. September 2003.
[14]  Henriksson, A., Khaled, A.K.D. and Conway, P.L, “Lactobacillus colonization of the gastrointestinal tract of mice after removal of the nonsecreting stomach region,” Microbial Ecology in Health and Disease, 11 (2). 96-9. July 2011.
[15]  Holzapfel, W.H., Haberer, P., Snel, J., Bjorkroth, J., Schillinger, U. and Huis int Veld, J.H, “Overview of gut flora and probiotics,” International Journal of Food Microbiology, 41 (2). 85-100. May 1998.
[16]  Hunt, K. M., Foster, J. A., Forney, L. J., Schütte, U. M., Beck, D. L., Abdo, Z. and McGuire, M. A, “Characterization of the diversity and temporal stability of bacterial communities in human milk,” PloS one, 6(6). e21313. June 2011.
[17]  Jacobi, S.K. and Odle, J, “Nutritional factors influencing intestinal health of the neonate,” Advances in Nutritional, 3. 687-696. September, 2012.
[18]  Jayashree, S., Pooja, S., Pushpanathan, M., Vishnu, U., Sankarasubramanian, J., Rajendhran, J. and Gunasekaran P, “Genome Sequence of Lactobacillus fermentum Strain MTCC 8711, a Probiotic Bacterium Isolated from Yogurt,” Genome Announcements, 1(5). 1-2. October 2013.
[19]  Kaushik, J.K., Kumar, A., Duary, J.K., Mohanty, A.K., Grover, A., Batish, V.K., “Functional and Probiotic Attributes of an Indigenous Isolate of Lactobacillus plantarum,” 4 (12). e8099. December 2009.
[20]  Lankaputhra, W.E.V. and Shah, N.P, “Survival of Lactobacillus acidophilus and Bifidobacterium ssp in the presence of acid and bile salts,” Cultured Dairy Products Journal, 30 (3). 2-7. August 1995.
[21]  Lara Mantilla, C., and Burgos Portacio, A., “Probiotic potential of native strains, for as feed additives for poultry,” Revista Colombiana de Biotecnologia,. 15 (1), 31-40, July 2012.
[22]  Lara-Villoslada, F., Olivares, M. Sierra, S., Rodríguez, J.M., Boza, J. and Xaus, J, “Beneficial effects of probiotic bacteria isolated from breast milk,” British Journal of Nutrition 98 (1). 96-100. October 2007.
[23]  Lim, Y.M., Barnes, M.B., Gras, S.L., McSweeney, C., Lockett, T., Augustin, M.A., and Gooley, P.R, “Esterification of high amylose starch with short chain fatty acids modulates degradation by Bifidobacterium spp,” Journal of Functional Foods, 6. 137-146. January 2014.
[24]  Luo, Y., Ma, B.C., Zou, L.K., Cheng, J.G., Cai, Y.H., Kang, J.P., Li, B., Gao, X.H., Wang, P., and Xiao, J.J., “Identification and characterization of lactic acid bacteria from forest musk deer feces,” African Journal of Microbiology Research, 6 (29), 5871-5881, August 2012.
[25]  Maragkoudakisa, P.A., Zoumpopouloua, G., Miarisa, C., Kalantzopoulosa, G., Potb, B. and Tsakalidoua, E, “Probiotic potential of Lactobacillus strains isolated from dairy products,” International Dairy Journal, 16 (3). 189-199. March 2006.
[26]  Martin, R., Jimenez, E., Olivares, M., Fernández,, L., Xausb, J. and Rodríguez, J..M, “Lactobacillus salivarius CECT 5713, a potential probiotic strain isolated from infant feces and breast milk of a mother–child pair,” International Journal of Food Microbiology 112 (1). 35-43. October 2006.
[27]  Martín, R., Langa, S., Reviriego, C., Jiménez, E., Marín, M.L., Xaus, J., Fernández, L. and Rodríguez, J.M, “Human milk is a source of lactic acid bacteria for the infant gut,” Journal of Pediatrics, 143. 754-758. December 2003.
[28]  Martin, V., Maldonado-Barragan, A., Moles, L., Rodriguez-Banos, M., Campo, R.D., Fernandez, L., Rodriguez, J.M. and Jimenez, E. “Sharing of bacterial strains between breast milk and infant feces,” Journal of Human Lactation, 28 (1). 36-44. Febraury 2012.
[29]  Millar, M., Wilks, M. and Costeloe, K., “Probiotics for preterm infants,” Archive of Diseases in Childhood-Fetal and Neonatal Edition 88(5). F354 -358. September 1988.
[30]  Morrow, A.L. and Rangel, J.M, “Human milk protection against infectious diarrhea: implications for prevention and clinical care,” Seminars in Pediatric Infection Diseases, 15. 221-228. October 2004.
[31]  Nader-Macías, M.E., Otero, M.C., Espeche, M.C. and Maldonado, N.C, “Advances in the design of probiotic products for the prevention of major diseases in dairy cattle,” Journal of Industrial Microbiology and Biotechnology, 35 (11). 1387-95. November 1995.
[32]  Osmanagaoglu, O., Kiran, F. and Ataoglu, H, “Evaluation of in vitro probiotic potential of Pediococcus pentosaceus OZF isolated from human breast milk,” Probiotics and antimicrobial proteins, 2(3). 162-174. August 2010..
[33]  Pérez, M., Laurencio, M., Rondón, A.J., Milian, G., Bocourt, R. and Arteaga F, “Antimicrobial activity of a competitive exclusion probiotic mixture and its stability in time,” Revista de Salud Animal, 33 (3). 147-153. December 2011.
[34]  Ramiah, K., Van Reenena, C.A. and Dicks, L.M, “Expression of the mucus adhesion genes Mub and MapA, adhesion-like factor EF-Tu and bacteriocin gene plaA of Lactobacillus plantarum 423, monitored with real-time PCR,” International Journal of Food Microbiology, 116 (3). 405-409. Febraury 2007.
[35]  Reviriego, C., Eaton, T., Martín, R., Jiménez, E., Fernández, L., Gasson, M.J. and Rodríguez, J.M, “Screening of virulence determinants in Enterococcus faecium strains isolated from breast milk,” Journal of Human Lactation, 21 (2). 131-137. May 2005.
[36]  Sánchez, L., Vichi, J., Llanes, M., Castro, E., Soler, D.M., Espinosa, I., Kociubinski, G.L., and Ferreira, C.L., “In vitro isolation and characterization of lactobacillus spp. strains as a probiotic candidate,” Revista Salud Animal 33 (3), 154-160, October 2011.
[37]  Savadogo, A., Ouattara, A.T., Bassole, H.N. and Traore, S.A, “Review- bacteriocins and lactic acid bacteria -a minireview,” African Journal of Biotechnology, 4 (12). 678-683. December 2009.
[38]  Schillinger, U., Guigas, C. and Holzapfel, W.H, “In vitro adherence and other properties of lactobacilli used in probiotic yoghurt-like products,” International Dairy Journal, 15 (12). 1289-1297. December 2005.
[39]  Schneitz, K., Spielmann, P. and Noll, M, “Molecular genetics of aristaless, a prd-type homeo box gene involved in the morphogenesis of proximal and distal pattern elements in a subset of appendages in Drosophila,” Genes and Development, 7, 114-129. January 1993.
[40]  Shah, N.P, “Probiotic bacteria: selective enumeration and survival in dairy foods,” Journal of Dairy Science, 83 (4). 894-907. April 2000.
[41]  Sherman, P.M., Johnson.-Henry, K.C., Yeong, H.P., Ngo, P.S.C., Goulet, J. and Tompkins, T.A., “Probiotics reduce enterohemorrhagic Escherichia coli O157:H7- and enteropathogenic E. coli O127:H6-induced changes in polarized T84 epithelial cell monolayers by reducing bacterial adhesion and cytoskeletal rearrangements,” Infection and Immunity, 73. 5183-5188, August 2005.
[42]  Solis G, de Los Reyes-Gavilan CG, Fernandez N., Margolles A. and Geuimonde, M., “Establishment and development of lactic acid bacteria and bifidobacteria microbiota in breast-milk and the infant gut,” Anaerobe 16 (3). 307-310. June 2010.
[43]  Soll, R.F., “Probiotics: Are We Ready for Routine Use?,” Pediatrics 125. 1071. April 2010.
[44]  Stark, P.L. and Lee, A., “The microbial ecology of the large bowel of breast-fed and formula fed infants during the first year of life,” Journal of Medical Microbiology15(2). 189 –203. May 1982.
[45]  Tanaka, H., Doesburg, K., Iwasaki, T., and Mierau, I., “Screening of lactic acid bacteria for bile salt hydrolase activity,” Journal of Dairy Science, 82 (12), 2530-2535, December 1999.
[46]  Urbaniak, C., Burton, J.P. and Reid, G, “Breast, milk and microbes: A complex relationship that does not end with lactation,” Womens Health (London, England), 8 (4). 385-398. July 2012.
[47]  Vallejo, M., Marguet, E.R., Etchechoury, V.E, “Potencial Probiótico de Cepas de Lactobacillus Aisladas de Quesos Ovinos Patagónicos,” Revista de la Facultad de Salud Pública y Nutrición. 9 (4) Disponible desde: [Acceso Septiembre 2009].
[48]  Zavaglia, A.G., Kociubinski, G., Pérez, P. and De Antoni, G, “Isolation and characterization of Bifidobacterium strains for probiotic formulation,” Journal Food Protection, 61 (7). 865-873. July 1998.