Journal of Food and Nutrition Research
ISSN (Print): 2333-1119 ISSN (Online): 2333-1240 Website: Editor-in-chief: Prabhat Kumar Mandal
Open Access
Journal Browser
Journal of Food and Nutrition Research. 2016, 4(3), 137-147
DOI: 10.12691/jfnr-4-3-2
Open AccessArticle

Fucoxanthin-Rich Brown Algae Extract Decreases Inflammation and Attenuates Colitis-associated Colon Cancer in Mice

Zwe-Ling Kong1, , Ning-Jo Kao1, Jia-Yuan Hu1 and Chien-Sheng Wu1

1Department of Food Science, National Taiwan Ocean University, Keelung, Taiwan

Pub. Date: March 26, 2016

Cite this paper:
Zwe-Ling Kong, Ning-Jo Kao, Jia-Yuan Hu and Chien-Sheng Wu. Fucoxanthin-Rich Brown Algae Extract Decreases Inflammation and Attenuates Colitis-associated Colon Cancer in Mice. Journal of Food and Nutrition Research. 2016; 4(3):137-147. doi: 10.12691/jfnr-4-3-2


Fucoxanthin is a natural carotenoid that is isolated from seaweed. We evaluated the effects of fucoxanthin-rich brown algae extract (FX-BAE) on the development of dextran sulfate sodium (DSS)-induced colitis, and colitis-associated colon cancer (CACC) in BALB/c mice. Colitis mice were given drinking water containing 3% DSS for 14 days, and fed with or without FX-BAE (1, 2.5, or 5 g/kg bodyweight/day) from day 8 to day 14. Another way, CACC mice were treated with azoxymethane (AOM) and 2% DSS, and fed with or without FX-BAE at 0.5, 1, or 2.5 g/kg every 2 days. Results revealed the disease activity index (DAI), nitric oxide (NO), malondialdehyde (MDA), tumor necrosis factor-alpha (TNF-α), and interleukin-6 (IL-6) were all significantly less in FX-BAE treated mice. Additionally, FX-BAE not only decreased the incidence of colonic neoplasm, but also increased superoxide dismutase (SOD) production, lymphocyte proliferation and survival rate in CACC mice.

fucoxanthin colitis colon cancer inflammation dextran sulfate sodium

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


[1]  Bharti, A.C., Donato, N., Singh, S., Aggarwal, B.B., 2003. Curcumin (diferuloylmethane) down-regulates the constitutive activation of nuclear factor–κB and IκBα kinase in human multiple myeloma cells, leading to suppression of proliferation and induction of apoptosis. Blood 101, 1053-1062.
[2]  Bird, R.P., Good, C.K., 2000. The significance of aberrant crypt foci in understanding the pathogenesis of colon cancer. Toxicology Letters 112–113, 395-402.
[3]  Britton, G., 1995. Structure and properties of carotenoids in relation to function. The FASEB Journal 9, 1551-1558.
[4]  Caprilli, R., Viscido, A., Latella, G., 2007. Current management of severe ulcerative colitis. Nat Clin Pract Gastroenterol Hepatol 4, 92-101.
[5]  Carter, A.B., Misyak, S.A., Hontecillas, R., Bassaganya-Riera, J., 2009. Dietary Modulation of Inflammation-Induced Colorectal Cancer through PPAR& NF-κB. PPAR Research 2009.
[6]  Cooper, H.S., Murthy, S.N., Shah, R.S., Sedergran, D.J., 1993. Clinicopathologic study of dextran sulfate sodium experimental murine colitis. Lab Invest. 69, 238-249.
[7]  Cosnes, J., Gower–Rousseau, C., Seksik, P., Cortot, A., 2011. Epidemiology and Natural History of Inflammatory Bowel Diseases. Gastroenterology 140, 1785-1794.e1784.
[8]  Coussens, L.M., Werb, Z., 2002. Inflammation and cancer. Nature 420, 860-867.
[9]  Cui, X., Jin, Y., Hofseth, A.B., Pena, E., Habiger, J., Chumanevich, A., Poudyal, D., Nagarkatti, M., Nagarkatti, P.S., Singh, U.P., Hofseth, L.J., 2010. Resveratrol Suppresses Colitis and Colon Cancer Associated with Colitis. Cancer Prevention Research 3, 549-559.
[10]  Cunnick, J.E., Kojic, L.D., Hughes, R.A., 1994. Stress-Induced Changes in Immune Function Are Associated with Increased Production of an Interleukin-1-like Factor in Young Domestic Fowl. Brain, Behavior, and Immunity 8, 123-136.
[11]  D’Orazio, N., Gemello, E., Gammone, M. A., Girolamo, M, Ficoneri, C, and Riccioni, G., 2012. Fucoxantin: A Treasure from the Sea. Mar. Drugs 10, 604-616.
[12]  Deguchi, Y., Andoh, A., Inatomi, O., Yagi, Y., Bamba, S., Araki, Y., Hata, K., Tsujikawa, T., Fujiyama, Y., 2007. Curcumin Prevents the Development of Dextran Sulfate Sodium (DSS)-Induced Experimental Colitis. Dig Dis Sci 52, 2993-2998.
[13]  Ding, S., Walton, K.L.W., Blue, R.E., MacNaughton, K., Magness, S.T., Lund, P.K., 2012. Mucosal Healing and Fibrosis after Acute or Chronic Inflammation in Wild Type FVB-N Mice and C57BL6 Procollagen α1(I)-Promoter-GFP Reporter Mice. PLoS One. 2012; 7(8): e42568. 7, e42568-e42574.
[14]  Du, C., and Wang, Y., 2011. The immunoregulatory mechanisms of carcinoma for its survival and developmen. J Exp Clin Cancer Res 30, 1-10.
[15]  Engel, M., Neurath, M., 2010. New pathophysiological insights and modern treatment of IBD. J Gastroenterol 45, 571-583.
[16]  Evans, N.P., Misyak, S.A., Schmelz, E.M., Guri, A.J., Hontecillas, R., Bassaganya-Riera, J., 2010. Conjugated Linoleic Acid Ameliorates Inflammation-Induced Colorectal Cancer in Mice through Activation of PPARγ. The Journal of Nutrition 140, 515-521.
[17]  Gommeaux, J., Cano, C., Garcia, S., Gironella, M., Pietri, S., Culcasi, M., Pébusque, M.-J., Malissen, B., Dusetti, N., Iovanna, J., Carrier, A., 2007. Colitis and Colitis-Associated Cancer Are Exacerbated in Mice Deficient for Tumor Protein 53-Induced Nuclear Protein 1. Molecular and Cellular Biology 27, 2215-2228.
[18]  Haugan, J.A., Aakermann, T., Liaaen-Jensen, S., 1992. Isolation of fucoxanthin and peridinin, in: P. Lester (Ed.), Methods in Enzymology. Academic Press, pp. 231-245.
[19]  Heo, S.J., Yoon, W.J., Kim, K.N., Oh, C., Choi, Y.U., Yoon, K.T., Kang, D.H., Qian, Z.J., Choi, I.-W., Jung, W.-K., 2012. Anti-inflammatory effect of fucoxanthin derivatives isolated from Sargassum siliquastrum in lipopolysaccharide-stimulated RAW 264.7 macrophage. Food and Chemical Toxicology 50, 3336-3342.
[20]  Hosokawa, M., Kudo, M., Maeda, H., Kohno, H., Tanaka, T., Miyashita, K., 2004. Fucoxanthin induces apoptosis and enhances the antiproliferative effect of the PPARγ ligand, troglitazone, on colon cancer cells. Biochimica et Biophysica Acta (BBA) - General Subjects 1675, 113-119.
[21]  Hu, T., Liu, D., Chen, Y., Wu, J., Wang, S., 2010. Antioxidant activity of sulfated polysaccharide fractions extracted from Undaria pinnitafida in vitro. International Journal of Biological Macromolecules 46, 193-198.
[22]  Jung H.C., Kim, J.M., Song, I.S., Kim, C.Y., 1997. Helicobacter pylori induces an array of pro-inflammatory cytokines in human gastric epithelial cells: quantification of mRNA for interleukin-8, -1 alpha/beta, granulocyte-macrophage colony-stimulating factor, monocyte chemoattractant protein-1 and tumour necrosis factor-alpha. J Gastroenterol Hepatol. 12, 473-480.
[23]  Kane, S.V., Schoenfeld, P., Sandborn, W.J., Tremaine, W., Hofer, T., Feagan, B.G., 2002. Systematic review: the effectiveness of budesonide therapy for Crohn's disease. Alimentary Pharmacology & Therapeutics 16, 1509-1517.
[24]  Kim, J.M., Araki, S., Kim, D.J., Park, C.B., Takasuka, N., Baba-Toriyama, H., Ota, T., Nir, Z., Khachik, F., Shimidzu, N., Tanaka, Y., Osawa, T., Uraji, T., Murakoshi, M., Nishino, H., Tsuda, H., 1998. Chemopreventive effects of carotenoids and curcumins on mouse colon carcinogenesis after 1,2-dimethylhydrazine initiation. Carcinogenesis 19, 81-85.
[25]  Kim, K.N., Heo, S.J., Yoon, W.J., Kang, S.M., Ahn, G., Yi, T.H., Jeon, Y.J., 2010. Fucoxanthin inhibits the inflammatory response by suppressing the activation of NF-κB and MAPKs in lipopolysaccharide-induced RAW 264.7 macrophages. European Journal of Pharmacology 649, 369-375.
[26]  Kim, S.K., Ravichandran, Y., Khan, S., Kim, Y., 2008. Prospective of the cosmeceuticals derived from marine organisms. Biotechnology and Bioprocess Engineering 13, 511-523.
[27]  Lakhan, S., Kirchgessner, A., 2010. Neuroinflammation in inflammatory bowel disease. Journal of Neuroinflammation 7, 37.
[28]  Lawrence, T., Willoughby, D.A., Gilroy, D.W., 2002. Anti-inflammatory lipid mediators and insights into the resolution of inflammation. Nat Rev Immunol 2, 787-795.
[29]  Maeda, H., Tsukui, T., Sashima, T., Hosokawa, M., Miyashita, K., 2008. Seaweed carotenoid, fucoxanthin, as a multi-functional nutrient. Asia Pac J Clin Nutr. 17 196-199.
[30]  Meira, L.B., Bugni, J.M., Green, S.L., Lee, C.-W., Pang, B., Borenshtein, D., Rickman, B.H., Rogers, A.B., Moroski-Erkul, C.A., McFaline, J.L., Schauer, D.B., Dedon, P.C., Fox, J.G., Samson, L.D., 2008. DNA damage induced by chronic inflammation contributes to colon carcinogenesis in mice. The Journal of Clinical Investigation 118, 2516-2525.
[31]  Palacios, M.G., Cunnic, J.E., Winkler, D.W., Vleck, C.M., 2007. Immunosenescence in some but not all immune components in a free-living vertebrate, the tree swallow. Proc Biol Sci. 2749, 951-957.
[32]  Qian, J., Chen, F., Kovalenkov, Y., Pandey, D., Moseley, M.A., Foster, M.W., Black, S.M., Venema, R.C., Stepp, D.W., Fulton, D.J.R., 2012. Nitric oxide reduces NADPH oxidase 5 (Nox5) activity by reversible S-nitrosylation. Free Radical Biology and Medicine 52, 1806-1819.
[33]  Riccioni, G., 2012. Marine Carotenoids and Oxidative Stress. Marine Drugs 10, 116-118.
[34]  Rocha, F.D., Soares, A.R., Houghton, P.J., Pereira, R.C., Kaplan, M.A.C., Teixeira, V.L., 2007. Potential cytotoxic activity of some Brazilian seaweeds on human melanoma cells. Phytotherapy Research 21, 170-175.
[35]  Roessner, A., Kuester, D., Malfertheiner, P., Schneider-Stock, R., 2008. Oxidative stress in ulcerative colitis-associated carcinogenesis. Pathology - Research and Practice 204, 511-524.
[36]  Sharma, R.A., Gescher, A.J., Steward, W.P., 2005. Curcumin: The story so far. European journal of cancer (Oxford, England : 1990) 41, 1955-1968.
[37]  Shen, L.R., Xiao, F., Yuan, P., Chen, Y., Gao, Q.K., Parnell, L., Meydani, M., Ordovas, J., Li, D., Lai, C.Q., 2012. Curcumin-supplemented diets increase superoxide dismutase activity and mean lifespan in Drosophila. AGE, 1-10.
[38]  Shiratori, K., Ohgami, K., Ilieva, I., Jin, X.H., Koyama, Y., Miyashita, K., Yoshida, K., Kase, S., Ohno, S., 2005. Effects of fucoxanthin on lipopolysaccharide-induced inflammation in vitro and in vivo. Experimental Eye Research 81, 422-428.
[39]  Sugawara, T., Kushiro, M., Zhang, H., Nara, E., Ono, H., Nagao, A., 2001. Lysophosphatidylcholine Enhances Carotenoid Uptake from Mixed Micelles by Caco-2 Human Intestinal Cells. The Journal of Nutrition 131, 2921-2927.
[40]  Takashima, M., Shichiri, M., Hagihara, Y., Yoshida, Y., Niki, E., 2012. Capacity of fucoxanthin for scavenging peroxyl radicals and inhibition of lipid peroxidation in model systems. Free Radical Research 46, 1406-1412.
[41]  Tanaka, T., Shnimizu, M., Moriwaki, H., 2012. Cancer Chemoprevention by Carotenoids. Molecules 17, 3202-3242.
[42]  Thomsen, O.Ø., Cortot, A., Jewell, D., Wright, J.P., Winter, T., Veloso, F.T., Vatn, M., Persson, T., Pettersson, E., 1998. A Comparison of Budesonide and Mesalamine for Active Crohn's Disease. New England Journal of Medicine 339, 370-374.
[43]  Vershinin, A., 1999. Biological functions of carotenoids--diversity and evolution. Biofactors. 10, 99-104.
[44]  Yamamoto, K., Ishikawa, C., Katano, H., Yasumoto, T., Mori, N., 2011. Fucoxanthin and its deacetylated product, fucoxanthinol, induce apoptosis of primary effusion lymphomas. Cancer letters 300, 225-234.
[45]  Zitvogel, L., Kepp, O., Galluzzi, L., Kroemer, G., 2012. Inflammasomes in carcinogenesis and anticancer immune responses. Nat Immunol 13, 343-351.