Journal of Food and Nutrition Research
ISSN (Print): 2333-1119 ISSN (Online): 2333-1240 Website: Editor-in-chief: Prabhat Kumar Mandal
Open Access
Journal Browser
Journal of Food and Nutrition Research. 2016, 4(1), 12-19
DOI: 10.12691/jfnr-4-1-3
Open AccessArticle

Comparison of Antifatigue Activity of Five Sea Cucumber Species in a Mouse Model of Intense Exercise

Jitima Suwanmala1, 2, Shangyun Lu1, Qingjuan Tang1, Charuay Sukhsangchan2, Rong Zheng1, Suriyan Tunkijjanukij3, and Changhu Xue1,

1College of Food Science and Engineering, Ocean University of China, Qingdao, P.R. China

2Department of Marine Science, Faculty of Fisheries, Kasetsart University, Bangkok, Thailand

3Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok, Thailand

Pub. Date: January 14, 2016

Cite this paper:
Jitima Suwanmala, Shangyun Lu, Qingjuan Tang, Charuay Sukhsangchan, Rong Zheng, Suriyan Tunkijjanukij and Changhu Xue. Comparison of Antifatigue Activity of Five Sea Cucumber Species in a Mouse Model of Intense Exercise. Journal of Food and Nutrition Research. 2016; 4(1):12-19. doi: 10.12691/jfnr-4-1-3


Background: Sea cucumber (class Holothuroidea, phylum Echinodermata) is a marine food rich in valuable nutrients and is confirmed to have antifatigue effects. This study aimed to compare the antifatigue activity of five sea cucumber species from China and Thailand. Materials and Methods: A mouse model of effective intense exercise was used. Blood levels of lactic acid (LA), and creatine kinase (CK), liver and muscle glycogen content, malondialdehyde (MDA) content and blood superoxide dismutase (SOD) activity were investigated. Results: Holothuria scabra (Thailand) supplementation decreased blood LA and CK levels from 9.17 ± 0.59 and 0.52 ± 0.03 to 7.82 ± 0.97 mmol/L and 0.40 ± 0.08 U/ml, respectively and increased liver and muscle glycogen levels after intense exercise from 10.70 ± 0.18 and 0.93 ± 0.02 to 14.57 ± 1.61 and 1.02 ± 0.06 mg/g, respectively. Identical results were also obtained in the popular Chinese species A. japonicas. Furthermore, A. japonicus and Thenenota ananas supplementation decreased MDA content significantly (p<0.01 and p<0.05, respectively). A. japonicus, H. scabra, Acaudina molpadioides and Cucumaria frondosa supplementation significantly increased SOD level. Conclusion: The five sea cucumber species, especially A. japonicus and H. scabra, display good antifatigue activities.

Holothuroidea antifatigue antioxidant exercise performance mouse model

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


[1]  Davis, J.M. and Bailey, S.P, “Possible mechanisms of central nervous system fatigue during exercise,” Med Sci Sports Exerc, 29. 45-57. 1997.
[2]  Horng, C.T., Huang, J.K., Wang, H.Y., Huang, C.C. and Chen, F.A, “Antioxidant and antifatigue activities of Polygonatum alte-lobatum Hayata rhizomes in rats,” Nutrients., 6. 5327-5337. 2014.
[3]  Huang, W.C., Lin, C.I., Chiu, C.C., Lin, Y.T., Huang, W.K., Huang, H.Y. and Huang, C.C, “Chicken essence improves exercise performance and ameliorates physical fatigue,” Nutrients., 6. 2681-2696. 2014.
[4]  Qi, B., Liu, L., Zhang, H., Zhou, G.X., Wang, S., Duan, X.Z., Bai, X.Y., Wang, S.M. and Zhao, D.Q, “Anti-fatigue effects of proteins isolated from Panax quinquefolium,” J. Ethnopharmacol., 153. 430-434. 2014.
[5]  Tan, W., Yu, K.Q., Liu, Y.Y., Ouyang, M.Z., Yan, M.H., Luo, R. and Zhao, X.S, “Anti-fatigue activity of polysaccharides extract from Radix Rehmanniae Preparata,” Int. J. Biol. Macromol., 50. 59-62. 2012.
[6]  Budgett, R, “Fatigue and underperformance in athletes: the overtraining syndrome,” Brit. J. Sport Med., 32. 107-110. 1998.
[7]  Noakes, T, “Physiological models to understand exercise fatigue and the adaptations that predict or enhance athletic performance,” Scand. J. Med. Sci. Spor., 10. 123-145. 2000.
[8]  Ohtani, M., Maruyama, K., Suzuki, S., Sugita, M. and Kobayashi, K, “Changes in hematological parameters of athletes after receiving daily dose of a mixture of 12 amino acids for one month during the middle-and long-distance running training,” Biosci Biotech Bioch., 65. 348-355. 2001.
[9]  Kim, K., Yu, K., Kang, D. and Suh, H, “Anti‐stress and anti‐fatigue effect of fermented rice bran,” Phytother. Res., 16. 700-702. 2002.
[10]  Uthayathas, S., Karuppagounder, S.S., Tamer, S.I., Parameshwaran, K., Degim, T., Suppiramaniam, V. and Dhanasekaran, M, “Evaluation of neuroprotective and anti-fatigue effects of sildenafil,” Life Sci., 81. 988-992. 2007.
[11]  Wang, J., Li, S., Fan, Y., Chen, Y., Liu, D., Cheng, H., Gao, X. and Zhou, Y, “Anti-fatigue activity of the water-soluble polysaccharides isolated from Panax ginseng CA Meyer,” J. Ethnopharmacol., 130. 421-423. 2010.
[12]  Kan, N.W., Huang, W.C., Lin, W.T., Huang, C.Y., Wen, K.C., Chiang, H.M., Huang, C.C. and Hsu, M.C, “Hepatoprotective effects of Ixora parviflora extract against exhaustive exercise-induced oxidative stress in mice,” Molecules., 18. 10721-10732. 2013.
[13]  Kumar, G.P., Anand, T., Singsit, D., Khanum, F. and Anilakumar, K, “Evaluation of antioxidant and anti-fatigue properties of Trigonella foenum-graecum L. in rats subjected to weight loaded forced swim test,” Pharmacognosy J., 5. 66-71. 2013.
[14]  Ding, J.F., Li, Y.Y., Xu, J.J., Su, X.R., Gao, X. and Yue, F.P, “Study on effect of jellyfish collagen hydrolysate on anti-fatigue and anti-oxidation,” Food Hydrocolloid., 25. 1350-1353. 2011.
[15]  Wang, S.Y., Huang, W.C., Liu, C.C., Wang, M.F., Ho, C.S., Huang, W.P., Hou, C.C., Chuang, H.L. and Huang, C.C, “Pumpkin (Cucurbita moschata) fruit extract improves physical fatigue and exercise performance in mice,” Molecules., 17. 11864-11876. 2012.
[16]  Xu, C., Lv, J., Lo, Y.M., Cui, S.W., Hu, X. and Fan, M, “Effects of oat β-glucan on endurance exercise and its anti-fatigue properties in trained rats,” Carbohydr Polym., 92. 1159-1165. 2013.
[17]  Zhang, H., Liu, Y., Zhou, J., Wang, J. and Sun, B, “Amylopectin is the anti-fatigue ingredient in glutinous rice,” INT J BIOL MACROMOL., 63. 240-243. 2014.
[18]  Chen, Y.M., Tsai, Y.H., Tsai, T.Y., Chiu, Y.S., Wei, L., Chen, W.C. and Huang, C.C, “Fucoidan supplementation improves exercise performance and exhibits anti-fatigue action in mice,” Nutrients., 7. 239-252. 2015.
[19]  Bordbar, S., Anwar, F. and Saari, N, “High-value components and bioactives from sea cucumbers for functional foods-a review,” Mar. Drugs., 9. 1761-1805. 2011.
[20]  Aminin, D.L., Menchinskaya, E.S., Pisliagin, E.A., Silchenko, A.S., Avilov, S.A. and Kalinin, V.I, “Anticancer activity of sea cucumber triterpene glycosides,” Mar. Drugs., 13. 1202-1223. 2015.
[21]  Kiew, P.L. and Don, M.M, “Jewel of the seabed: sea cucumbers as nutritional and drug candidates,” Int. J. Food Sci. Nutri., 63. 616-636. 2012.
[22]  Zuo, T., Li, X., Chang, Y., Duan, G., Yu, L., Zheng, R., Xue, C. and Tang, Q, “Dietary fucoidan of Acaudina molpadioides and its enzymatically degraded fragments could prevent intestinal mucositis induced by chemotherapy in mice,” Food funct., 6. 415-422. 2015.
[23]  Fu, X.J. and Cui, Z.F, “Anti-fatigue effects of lower polypeptide from sea cucumber on mice,” Food Sci. Technol., 4. 259-261. 2007.
[24]  Hua-xian, W., Hong-Tao, Y., Jongm-Yung, J. and Hai-Zhu, H, “The study of anti-fatigue effects of sea cucumber polypeptide on mice,” J. Food Mach. 3. 028. 2007.
[25]  ChangHeng, L., XiaoJun, W., WenPeng, Y., XiuMei, M., XueKui, X., MianSong, Z. and Jianmin, L, “Anti-fatigue and immune functions of sea cucumber oral liquid,” Mod. Food Sci. Technol., 25. 1115-1119. 2009.
[26]  Bing, L., Jing-feng, W., Jia, F., Xiao-lin, L., Hui, L., Qin, Z. and Chang-hu, X, “Antifatigue effect of sea cucumber Stichopus japonicus in mice,” Food Sci., 31. 244-247. 2010.
[27]  Zhou, X., Wang, C. and Jiang, A, “Antioxidant peptides isolated from sea cucumber Stichopus japonicas,” Eur. Food Res. Technol., 234. 441-447. 2012.
[28]  Wang, Y., Su, W., Zhang, C., Xue, C., Chang, Y., Wu, X., Tang, Q. and Wang, J, “Protective effect of sea cucumber (Acaudina molpadioides) fucoidan against ethanol-induced gastric damage,” Food Chem., 133. 1414-1419. 2012.
[29]  Yu, L., Xu, X., Xue, C., Chang, Y., Ge, L., Wang, Y., Zhang, C., Liu, G. and He, C, “Enzymatic preparation and structural determination of oligosaccharides derived from sea cucumber (Acaudina molpadioides) fucoidan,” Food chem., 139. 702-709. 2013.
[30]  Yu, L., Ge, L., Xue, C., Chang, Y., Zhang, C., Xu, X. and Wang, Y, “Structural study of fucoidan from sea cucumber Acaudina molpadioides: A fucoidan containing novel tetrafucose repeating unit,” Food Chem., 142. 197-200. 2014.
[31]  Xu, H., Wang, J., Chang, Y., Xu, J., Wang, Y., Long, T. and Xue, C, “Fucoidan from the sea cucumber Acaudina molpadioides exhibits anti-adipogenic activity by modulating the Wnt/β-catenin pathway and down-regulating the SREBP-1c expression,” Food Funct., 5. 1547-1555. 2014.
[32]  Kale, V., Freysdottir, J., Paulsen, B.S., Friðjónsson, Ó.H., Hreggviðsson, G.Ó. and Omarsdottir, S, “Sulphated polysaccharide from the sea cucumber Cucumaria frondosa affect maturation of human dendritic cells and their activation of allogeneic CD4 (+) T cells in vitro,” Bioactive Carbohydrates and Dietary Fibre. 2. 108-117. 2013.
[33]  Dong, X., Pan, R., Deng, X., Chen, Y, Zhao, G. and Wang, C, “Separation, purification, anticoagulant activity and preliminary structural characterization of two sulfated polysaccharides from sea cucumber Acaudina molpadioidea and Holothuria nobilis,” Process Biochem., 49. 1352-1361. 2014.
[34]  Zheng, R., Li, X., Cao, B., Zuo, T., Wu, J., Wang, J., Xue, C. and Tang, Q, “Dietary Apostichopus japonicus enhances the respiratory and intestinal mucosal immunity in immunosuppressive mice,” Biosci Biotech Bioch., 79. 253-259. 2015.
[35]  Wu, R.E., Huang, W.C., Liao, C.C., Chang, Y.K., Kan, N.W. and Huang, C.C, “Resveratrol protects against physical fatigue and improves exercise performance in mice,” Molecules., 18. 4689-4702. 2013.
[36]  Jia, J.M. and Wu, C.F, “Antifatigue Activity of Tissue Culture Extracts of Saussurea involucrata,” Pharm Biol., 46. 433-436. 2008.
[37]  Liu, Y., Zhou, Y., Nirasawa, S., Tatsumi, E., Cheng, Y. and Li, L, “In vivo anti-fatigue activity of sufu with fortification of isoflavones,” Pharmacogn Mag., 10. 367-373. 2014.
[38]  Passarella, S., de Bari, L., Valenti, D., Pizzuto, R., Paventi, G. and Atlante, A, “Mitochondria and L-lactate metabolism,” FEBS letters., 582. 3569-3576. 2008.
[39]  Sullivan, M.A., Aroney, S.T., Li, S., Warren, F.J., Joo, J.S., Mak, K.S., Stapleton, D.I., Bell-Anderson, K.S. and Gilbert, R.G, “Changes in glycogen structure over feeding cycle sheds new light on blood-glucose control,” Biomacromolecules. 15. 660-665. 2014.
[40]  Iaia, F., Perez‐Gomez, J., Nordsborg, N. and Bangsbo, J, “Effect of previous exhaustive exercise on metabolism and fatigue development during intense exercise in humans,” Scand. J. Med. Sci. Spor., 20. 619-629. 2010.
[41]  Ni, W., Gao, T., Wang, H., Du, Y., Li, J., Li, C., Wei, L. and Bi, H, “Anti-fatigue activity of polysaccharides from the fruits of four Tibetan plateau indigenous medicinal plants,” J. ethnopharmacol., 150. 529-535. 2013.
[42]  Tharakan, B., Dhanasekaran, M., Brown‐Borg, H.M., Manyam, B.V, “Trichopus zeylanicus combats fatigue without amphetamine‐mimetic activity,” Phytother. Res., 20. 165-168. 2006.
[43]  Zhong, Y., Khan, M.A. and Shahidi, F, “Compositional characteristics and antioxidant properties of fresh and processed sea cucumber (Cucumaria frondosa),” J. Agr. Food Chem., 5. 1188-1192. 2007.
[44]  Althunibat, O.Y., Hashim, R.B., Taher, M., Daud, J.M., Ikeda, M.A. and Zali, B, “In vitro antioxidant and antiproliferative activities of three Malaysian sea cucumber species,” Eur. J. Sci. Res., 37. 376-387. 2009.