Journal of Food and Nutrition Research
ISSN (Print): 2333-1119 ISSN (Online): 2333-1240 Website: Editor-in-chief: Prabhat Kumar Mandal
Open Access
Journal Browser
Journal of Food and Nutrition Research. 2015, 3(8), 526-539
DOI: 10.12691/jfnr-3-8-8
Open AccessArticle

Proteomic Identification of Stonefish Synanceja verrucosa Venom

Tai-Yuan Chen1, Yu-Huai Chang1, Hsi-Pin Lin2, Shui-Tein Chen3 and Deng-Fwu Hwang1, 4,

1Department of Food Science and Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan, ROC

2Department of Food Science, Yuanpei University, Hsinchu, Taiwan, ROC

3Institute of Biological Chemistry and Genomic Research Center, Academia Sinica, Taipei, Taiwan, ROC

4Department of Health and Nutrition, Asia University, Taichung, Taiwan, ROC

Pub. Date: October 29, 2015

Cite this paper:
Tai-Yuan Chen, Yu-Huai Chang, Hsi-Pin Lin, Shui-Tein Chen and Deng-Fwu Hwang. Proteomic Identification of Stonefish Synanceja verrucosa Venom. Journal of Food and Nutrition Research. 2015; 3(8):526-539. doi: 10.12691/jfnr-3-8-8


Three venom toxins, neoverrucotoxin (neoVTX) α-subunit and β-subunit as well as verrucotoxin (VTX) β-subunit, were identified in the stonefish Synanceja verrucosa by SDS-PAGE, Native-PAGE and two-dimensional electrophoresis (2-DE) coupled with Matrix Assisted Laser Desorption Ionization-Quadrupole-Time-of-Flight (MALDI-Q-TOF). The venom estimated by Native-PAGE were 471, 358, 260 and 166 kDa. The predominate protein bands of crude venom were 84 and 75 kDa by SDS-PAGE. The crude venom protein fell in the region with pI values of 7-9 and molecular weights of 75-90 kDa by 2-DE. Peptide mass fingerprints (PMF) and MS/MS ions originated from MALDI-Q-TOF were used to identify the protein. Our results showed that the complete components of neoverrucotoxin (neoVTX) α-subunit and β-subunit as well as verrucotoxin (VTX) β-subunit were identified from SDS-PAGE and 2-DE patterns. Native-PAGE did not yield protein identifications but revealed the presence of protein complexes.

2-DE MALDI-Q-TOF neoverrucotoxin spine venom Synanceja verrucosa

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


[1]  Church, J.E.and Hodgson, W.C. (2000). Dose-dependent cardiovascular effects of stonefish (Synanceja trachyrnis) venom. Toxicon, 38: 391-407.
[2]  Khoo, H.E., Yuen, R., Poh, C.H. and Tan, C.H. (1992). Biological activities of Synanceja horrida (stonefish) venom. Natural Toxins, 1: 54-60.
[3]  Ueda, A., Suzuki, M., Honma, T., Naga, H., Nagashima, Y. and Shiomi, K. (2006). Purification, properties and cDNA cloning of neoverrucotoxin (neoVTX), a hemolytic lethal factor from the stonefish Synanceja verrucosa venom. Biochimica et Biophysica Acta, 1760: 1713-1722.
[4]  Garnier, P., Goudey-Perriere, F., Breton, P., Dewulf, C., Petek, F. and Perriere, C. (1995). Enzymatic properties of the stonefish (Synanceja verrucosa, Bloch and Schneider, 1801) venom and purification of a lethal, hypotensive and cytolytic factor. Toxicon, 33: 143-155.
[5]  Garnier, P., Ducancel, F., Ogawa, T., Boulain, J.C., Goudey-Perriere, F., Perriere, C.and Menez, A. (1997). Complete amino-acid sequence of the beta-subunit of VTX from venom of the stonefish (Synanceja verrucosa) as identified from cDNA. Biochimica et Biophysica Acta, 1337: 1-5.
[6]  Breton, P., Delamancle, I., Buee, J., Goudey-Perriere, F. and Perriere C. (2002). Evidence for a neurotoxic activity in crude venom of stonefish (Synanceja verrucosa). Journal of Natural Toxins, 11: 305-318.
[7]  Madokoro, M., Ueda, A., Kiriake, A. and Shiomi, K. (2011). Properties and cDNA cloning of a hyaluronidase from the stonefish Synanceja verrucosa venom. Toxicon, 58: 285-292.
[8]  Garnier, P., Grosclaude, J.M., Goudy-Perriere, F., Gervat, V., Gayral, P., Jackquot, C. and Perriere, C. (1996). Presence of norepinephrine and their biogenic amines in stonefish venom. Journal of Chromatography B: Biomedical Sciences and Applications, 685: 364-369.
[9]  Khoo, H.E. (2002). Bioactive proteins from stonefish venom. Clinical and Experimental Pharmacology and Physiology, 29: 802-806.
[10]  Andrich, F., Carnielli, J.B., Cassoli, J.S., Lautner, R.Q., Santos, R.A.S., Pimenta, A.M.C., DeLima, M.F. and Figueiredos, S.S. (2010). A potent vasoactive cytolysin isolated from Scorpaema plumier scorpionfish venom. Toxicon, 56: 487-496.
[11]  Gomes, H.H., Menezes, T.N., Carnielli, J.B.T., Andrich, F., Evangelista, K.S., Chavez-Olortegui, C., Vassallo, D.Y. and Figueiredo, S.G. (2011). Stonefish antivenom neutralizes the inflammatory and cardiovascular effects induced by scorpionfish Scorpaena plumier venom. Toxicon, 57: 992-999.
[12]  Henzel, W.J., Billeci, T.M., Stults, J.T., Wong, S.C., Grimley, C. and Watanabe, C. (1993). Identifying proteins from two-dimensional gels by molecular mass searching of peptide fragments in protein sequence databases. Proceedings of National Academy of Sciences of the United States of America, 90: 5011-5015.
[13]  James, P., Quadroni, M., Carafoli, E. and Gonnet, G. (1993). Protein identification by mass profile fingerprinting. Biochemical and Biophysical Research Communications, 195: 58-64.
[14]  Mann, M., Højrup, P. and Roepstorff, P. (1993). Use of mass spectrometric molecular weight information to identify proteins in sequence databases. Biological Mass Spectrometry, 22: 338-345.
[15]  Pappin, D.J., Hojrup, P. and Bleasby, A.J. (1993). Rapid identification of proteins by peptide-mass fingerprinting. Current Biology, 3: 327-332.
[16]  Yates, J.R., Speicher, S., Griffin, P.R. and Hunkapiller, T. (1993). Peptide mass maps: a highly informative approach to protein identification. Analytical Biochemistry, 214: 397-408.
[17]  Tsai, Y.C. and Hwang, D.F. (1999). Recognition of sting fish. Monthly Fisheries Extention, 148: 25-29. (in Chinese)
[18]  Lin, S.P. and Hwang, D.F. (2007). Venom toxin in stingfish. Science Development, 420: 14-18. (in Chinese)
[19]  Guilhaus, M. (1995). Orthogonal acceleration time-of-flight mass spectrometry. Journal of Mass Spectrometry, 30: 1519-1532.
[20]  Yates, J.R. (1996). Protein structure analysis by mass spectrometry. Methods in Enzymology, 271: 351-377.
[21]  Ghadessy, F.J., Chen, D., Kini, R.M., Chung, M.C., Jeyaseelan, K., Khoo, H.E. and Yuen, R. (1996). Stonustoxin is a novel lethal factor from stonefish (Synanceja horrida) venom. Journal of Biological Chemistry, 271: 25575-25581.
[22]  Kiriake, A. and Shiomi, K. (2011). Some properties and cDNA cloning of proteinaceous toxins from two species of lionfish (Pterois antennata and Pterois lunulata). Toxicon, 58: 494-501.
[23]  Kiriake, A., Suzuki, Y., Nagashima, Y. and Shiomi, K. (2013). Proteinaceous toxins from three species of scorpaeniform fish (lionfish Pterois lunulata, devil stinger Inimicus japonicus and waspfish Hypodytes rubripinnis): Close similarity in properties and primary structures to stonefish toxins. Toxicon, 70: 184-193.
[24]  Chen, T.Y., Hsieh, Y.W., Tsai, Y.H., Shiau, C.Y. and Hwang, D.F. (2002). Identification of species and measurement of tetrodotoxin in dried dressed fillets of the puffer fish, Lagocephalus lunaris. Journal of Food Protection, 65: 1670-1673.
[25]  Tseng, H.W., Juan, H.F., Huang, H.C., Lin, J.Y., Sinchaikul, S., Lai, T.C., Chen, C.F., Chen, S.T. and Wang, G.J. (2006). Lipopolysaccharide-stimulated response in rat aortic endothelial cells by a systems biology approach. Proteomics, 6: 5915-5928.
[26]  Schelimer, R.P., Gillespie, E. and Lichtenstein, L.M. (1981). Release of histamine from human leukocytes stimulated with the tumor-promoting phorbol diesters. I. Characterization of response. Journal of Immunology, 126: 570-574.
[27]  Wittig, I., Braun, H.P. and Schägger, H. (2006). Blue native PAGE. Nature Protocols, 1: 418-428.
[28]  Wessels, H.J.C.T., Vogel, R.O., Heuvel, L.v.d., Smeitink, J.A., Rodenburg, R.J., Nijtmans, L.G. and Farhoud, M.H. (2009). LC-MS/MS as an alternative for SDS-PAGE in blue native analysis of protein complexes. Proteomics, 9: 4221-4228.
[29]  Shiomi, K., Hosaka, M. and Kikuchi, T. (1993). Properties of a lethal factor in stonefish Synanceia verrucosa venom. Nippon Suisan Gakkaishi, 59: 1099.
[30]  Poh, C.H., Yuen, R., Khoo, H.E., Chung, M., Gwee, M. and Gopalakrishnakone, P. (1991). Purification and partial characterization of stonustoxin (lethal factor) from Synanceja horrida venom. Comparative Biochemistry and Physiology-Part B: Biochemistry & Molecular Biology, 99: 793-798.
[31]  Austin, L., Gills, R.G. and Youatt, G. (1965). Stonefish venom: some biochemical and chemical observations. The Australian Journal of Experimental Biology and Medical Science, 43: 79-90.
[32]  Colasante, C., Meunier, F.A., Kreger, A.S. and Molgó, J. (1996). Selective depletion of clear synaptic vesicles and enhanced quantal transmitter release at frog motor nerve endings produced by trachynilysin, a protein toxin isolated from stonefish (Synanceia trachynis) venom. European Journal of Neuroscience, 8: 2149-2156.
[33]  Nagai, H. (2012). Marine protein toxins. In: Handbook of marine natural products, Vol. 1. (Eds) Fattorusso, E., Gerwick, W.H., Taglialatela-Scafati, O., Springer, New York, pp. 1389-1419.
[34]  Chen, D.S., Kini, R.M., Yuen, R. and Khoo, H.E. (1997). Haemolytic activity of stonustoxin from stonefish (Synanceja horrida) venom: Pore formation and the role of cationic amino acid residues. Biochemical Journal, 325: 685-691.
[35]  Khoo, H.E., Chen, D.S. and Yuen, R. (1998). The role of cationic amino acid residues in the lethal activity of stonustoxin from stonefish (Synanceja horrida) venom. Biochemistry and Molecular Biology International, 44: 643-646.
[36]  Khoo, H.E., Chen, D.S. and Yuen, R. (1998). Role of free thiol groups in the biological activities of stonustoxin, a lethal factor from stonefish (Synanceja horrida) venom. Toxicon, 36: 469-476.
[37]  Yew, W.S. and Khoo, H.E. (2000). The role of tryptophan residues in the hemolytic activity of stonustoxin, a lethal factor from stonefish (Synanceja horrida) venom. Biochimie, 82: 251-257.
[38]  Woo, J.S., Imm, J.H., Min, C.K., Kim, K.J., Cha, S.S. and Oh, B.H. (2006). Structural and functional insights into the B30.2/SPRY domain. The EMBO Journal, 25: 1353-1363.
[39]  Henry, J., Ribouchon, M.T., Offer, C. and Pontarotti, P. (1997). B30.2 like domain proteins: a growing family. Biochemical and Biophysical Research Communications, 235: 162-165.
[40]  Perfetto, L., Gheraadini, P.F., Davey, N.E., Diella, F., Helmer-Citterich, M. and Cesareni, G. (2013). Exploring the diversity of SPRY/B30.2-mediated interactions. Trends in Biochemical Sciences, 38: 38-46.