Journal of Food and Nutrition Research
ISSN (Print): 2333-1119 ISSN (Online): 2333-1240 Website: Editor-in-chief: Prabhat Kumar Mandal
Open Access
Journal Browser
Journal of Food and Nutrition Research. 2015, 3(6), 371-378
DOI: 10.12691/jfnr-3-6-3
Open AccessArticle

Molecular Mechanism of Action for the Geranyl Flavonoid to Counter Dyslipidemia in Diabetic Milieu

Hai Niu1, 2, , Ke Li1, 3, Limei Ma1, Weihong Gong1, 4 and Wen Huang1, 3,

1Laboratory of Ethnopharmacology, Institute for Nanobiomedical Technology and Membrane Biology, Regenerative Medicine Research Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan 610041, China

2College of Mathematics, Sichuan University, Chengdu 610064, P.R. China

3College of Light Industry, Textile and Food Engineering, Sichuan University, Chengdu, Sichuan 610065, PR China

4School of Basic Clinical Medical, Beijing University of Traditional Chinese Medicine, Beijing 100029, China

Pub. Date: June 28, 2015

Cite this paper:
Hai Niu, Ke Li, Limei Ma, Weihong Gong and Wen Huang. Molecular Mechanism of Action for the Geranyl Flavonoid to Counter Dyslipidemia in Diabetic Milieu. Journal of Food and Nutrition Research. 2015; 3(6):371-378. doi: 10.12691/jfnr-3-6-3


This work was to examine the effect of 3’-methyl-4’, 7-dihydroxyflavanone, a geranyl flavonoid (GF), on hepatocellular AMPK activity and lipid levels in HepG2 cells and diabetic mice, and identify molecular mechanism of the GF action on remedying dyslipidemia. The AMPK activation and lipid-lowering effect of the GF in diabetic mice and in HepG2 cells paralleled observations. The GF activated AMPK in HepG2 cells treated with high glucose, and enhance phosphorylation of ACC1 and ACC2, two isoforms of ACC, resulting in decrease in ACC activity and hepatic lipids. As demonstrated in cells overexpressing a dominant-negative AMPK mutant, the effect of GF was shown to be mediated by the activation of AMPK. The AMPK was activated relatively rapidly by GF and well before any potential change in adenosine triphosphate (ATP) level was detected. Thus, both in vivo and in vitro inhibition of AMPK, activation of ACC, and hepatocellular lipid accumulation caused by sustained high glucose levels was effectively counteracted by activating AMPK with treatment of GF. It can be conclude that GF lower lipids both in vivo and in vitro by activating AMPK and inactivating ACC, and consequently down-regulating fatty acid synthesis. The work provides a strong evidence for GF as a new therapeutic agent to definitively remedy dyslipidemia in diabetic milieu.

geranyl flavonoid AMPK ACC diabetic milieu HepG2 cells dyslipidemia

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


[1]  Lam, T., Burns, K., Dennis, M., Cheung, N. W., Gunton, J. E., “Assessment of cardiovascular risk in diabetes: Risk scores and provocative testing”. World Journal of Diabetes 6. 634-641. 2015.
[2]  Ku, G. M., Kegels, G., “Adapting chronic care models for diabetes care delivery in low-and-middle-income countries: A review”. World Journal of Diabetes 6. 566-575. 2015.
[3]  Kahn, S. E., Hull, R. L., Utzschneider, K. M., “Mechanisms linking obesity to insulin resistance and type 2 diabetes”. Nature 444. 840-846. 2006.
[4]  Schlyer, S., Horuk, R., “I want a new drug: G-protein-coupled receptors in drug development”. Drug Discovery Today 11. 481-493. 2006.
[5]  Adaramoye, O. A., Akanni, O. O., “Protective effects of Artocarpus altilis (Moraceae) on cadmium-induced changes in sperm characteristics and testicular oxidative damage in rats”. Andrologia. 12426. 2015.
[6]  Liu, Y., Ragone, D., Murch, S. J., “Breadfruit (Artocarpus altilis): a source of high-quality protein for food security and novel food products”. Amino Acids 47. 847-856. 2015.
[7]  Jalal, T. K., Ahmed, I. A., Mikail, M., Momand, L., Draman, S., Isa, M. L., AbdullRasad, M. S., NorOmar, M., Ibrahim, M., AbdulWahab, R., “Evaluation of antioxidant, total phenol and flavonoid content and antimicrobial activities of Artocarpus altilis (breadfruit) of underutilized tropical fruit extracts”. Applied Biochemistry and Biotechnology 175. 3231-3243. 2015.
[8]  Singh, M. K., Usha, R., Hithayshree, K. R., Bindhu, O. S., “Hemostatic potential of latex proteases from Tabernaemontana divaricata (L.) R. Br. ex. Roem. and Schult. and Artocarpus altilis (Parkinson ex. F.A. Zorn) Forsberg”. Journal of Thrombosis and Thrombolysis 39. 43-49. 2015.
[9]  Nwokocha, C. R., Owu, D. U., McLaren, M., Murray, J., Delgoda, R., Thaxter, K., McCalla, G., Young, L., “Possible mechanisms of action of the aqueous extract of Artocarpus altilis (breadfruit) leaves in producing hypotension in normotensive Sprague-Dawley rats”. Pharmaceutical Biology 50. 1096-1102. 2012.
[10]  Adaramoye, O. A., Akanni, O. O., “Effects of Methanol Extract of Breadfruit (Artocarpus altilis) on Atherogenic Indices and Redox Status of Cellular System of Hypercholesterolemic Male Rats”. Adavance in Pharmacological Sciences 2014. 605425. 2014.
[11]  Wang, Y., Deng, T., Lin ,L., Pan, Y., Zheng, X., “Bioassay-guided isolation of antiatherosclerotic phytochemicals from Artocarpus altilis”. Phytotherapy Research 20. 1052-1055. 2006.
[12]  Fryer, L. G. D., Parbu−Patel, A., Carling, D., “The anti-diabetic drugs rosiglitazone and metformin stimulate AMP-activated protein kinase through distinct signaling pathways”. Journal of Biological Chemistry 277. 25226-25232. 2002.
[13]  Hardie, D. G., Carling, D., Carlson, M., “The AMP-activated/SNF1 protein kinase subfamily: metabolic sensors of the eukaryotic cell”. Annual Review of Biochemistry 67. 821-855. 1998.
[14]  Kemp B., Stapleton D., Campbell D. J., Chen Z. P., Murthy S., Walter M., Gupta A., Adams J. J., Katsis F., van Denderen B., Jennings I. G., Iseli T., Michell B. J., Witters L. A., “AMP-activated protein kinase, super metabolic regulator”. Biochemical Society Transactions 31. 162-168. 2003.
[15]  Ishibashi, S., Brown, M. S., Goldstein, J. L., Gerard, R. D., Hammer, R. E., Herz, J., “Hypercholesterolemia in low-density-lipoprotein receptor knockout mice and its reversal by adenovirus−mediated gene delivery”. Journal of Clinical Investigation 92. 883-893. 1993.
[16]  Iglesias, M. A1., Ye, J. M., Frangioudakis, G., Saha, A. K., Tomas, E., Ruderman, N. B., Cooney, G. J., Kraegen, E. W., “AICAR administration causes an apparent enhancement of muscle and liver insulin action in insulin-resistant high-fat-fed rats”. Diabetes 51. 2886-2894. 2002.
[17]  Peng X1, Guo X, Borkan SC, Bharti A, Kuramochi Y, Calderwood S, Sawyer DB., “Heat shock protein 90 stabilization of ErbB2 expression is disrupted by ATP depletion in myocytes”. Journal of Biological Inorganic Chemistry 280. 13148-13152. 2005.
[18]  Picard, F., Kurtev, M., Chung, N., Topark, N. A., Senawong, T., Machado, De. O. R., Leid, M., McBurney, M. W., Guarente, L., “Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma”. Nature 429. 771-776. 2004.
[19]  Mengwei, Z., Cynthia, H., Zhijun, L., “Interaction between Active Pak1 and Raf-1 Is Necessary for Phosphorylation and Activation of Raf-1”. The Journal of Biological Chemistry 277. 4395-4405. 2002.
[20]  Mengwei, Z., Christine, A. W., Xiao, Q. X., Aja, R., Rong, W., Zhi, J. L., “Microtubule integrity regulates Pak leading to Ras-independent activation of Raf-1: insights into mechanisms of Raf-1 activation”. The Journal of Biological Chemistry 267. 25157-25165. 2001.
[21]  Eva, T., Tsu-Shuen, T., Asish, K. S., Heather, E. M., Cheng, C. Z., Samar, I. I., Harvey, F. L., Neil, B. R., “Enhanced muscle fat oxidation and glucose transport by ACRP30 globular domain: acetyl-CoA carboxylase inhibition and AMP-activated protein kinase activation”. Proceedings of the National Academy of Sciences of the United states of America 99. 16309-16399. 2002.
[22]  Dekkers, D. H., Bezstarosti, K., Gurusamy, N., Luijk, K., Verhoeven, A.J., Rijkers, E. J., Demmers, J. A., Lamers, J. M., Maulik, N., Das, D. K., “Identification by a differential proteomic approach of the induced stress and redox proteins by resveratrol in the normal and diabetic rat heart”. Journal of Cellular and Molecular Medicine 12. 1677-1689. 2008.
[23]  Hardie, D. G., “Minireview: the AMP-activated protein kinase cascade: the key sensor of cellular energy status”. Endocrinology 144. 5179-5183. 2003.
[24]  Fryer, L. G. D., Carling, D., “AMP-activated protein kinase and the metabolic syndrome”. Biochemical Society Transactions 33. 362-366. 2005.
[25]  Mezei, O., Banz, W. J., Steger, R. W., Peluso, M. R., Winters, T. A., Shay, N., “Soy isoflavones exert antidiabetic and hypolipidemic effects through the PPAR pathways in obese Zucker rats and murine RAW 264.7 cells”. Journal of Nutrition 133. 1238-1243. 2003.
[26]  Wang, M. Y., Unger, R. H., “Role of PP2C in cardiac lipid accumulation in obese rodents and its prevention by troglitazone”. American Journal of Physiology-endocrinology and Metabolism 288. E216-E21. 2005.
[27]  Minokoshi, Y., Alquier, T., Furukawa, N., Kim, Y. B., Lee, A., Xue, B., Mu ,J., Foufelle, F., Ferré, P., Birnbaum, M. J., Stuck, B. J, Kahn, B. B., “AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus”. Nature 428. 569-574. 2004.
[28]  Park, S. H., Gammon, S. R., Knippers, J. D., Paulsen, S. R., Rubink,D. S., Winder, W. W., “Phosphorylation-activity relationships of AMPK and acetyl-CoA carboxylase in muscle”. Journal of Applied Physiology 92. 2475-2482. 2002.
[29]  Hardie, D. G., Pan, D. A., “Regulation of fatty acid synthesis and oxidation by the AMP-activated protein kinase”. Biochemical Society Transaction 30. 1064-1070. 2002
[30]  Unger, R. H., “The hyperleptinemia of obesity-regulator of caloric surpluses”. Cell 117. 145-146. 2004
[31]  Xavier, G., Leclerc, I., Varadi, A., Tsuboi, T., Moule, S. K., Rutter, G. A., “Role for AMP-activated protein kinase in glucose-stimulated insulin secretion and preproinsulin gene expression”. Biochemical Journal 371. 761-774. 2003
[32]  You, M., Matsumoto, M., Pacold, C. M., Cho, W. K., Crabb, D. W., “The role of AMP-activated protein kinase in the action of ethanol in the liver”. Gastroenterology 127. 1798-1808. 2004
[33]  Chen, M. B., McAinch, A. J., Macaulay, S. L., “Impaired activation of AMP-kinase and fatty acid oxidation by globular adiponectin in cultured human skeletal muscle of obese type 2 diabetics”. Journal of Clinical Endocrinology Metabolism 90. 3665-3672. 2005
[34]  Ruderman, N. B., Cacicedo, J. M., Itani, S., “Malonyl-CoA and AMP-activated protein kinase (AMPK): possible links between insulin resistance in muscle and early endothelial cell damage in diabetes”. Biochemical Society Transactions 31. 202-206. 2003
[35]  Shaw, R. J., Lamia, K. A., Vasquez, D., Koo, S. H., Bardeesy, N., Depinho, R. A., Montminy, M., Cantley, L. C., “The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin”. Science 310. 1642-1646. 2005.
[36]  Abu-Elheiga, L., Matzuk, M. M., Kordari, P., Kordari, P., Oh, W., Shaikenov, T., Gu, Z., Wakil, S. J., “Mutant mice lacking acetyl-CoA carboxylase 1 are embryonically lethal”. Proceedings of the National Academy of Sciences of the United States of America 102. 12011-12016. 2005.
[37]  Yamauchi, T., Kamon, J., Minokoshi, Y., Ito, Y., Waki, H., Uchida, S., Yamashita, S., Noda, M., Kita, S., Ueki, K., Eto, K., Akanuma, Y., Froguel, P., Foufelle, F., Ferre, P., Carling, D., Kimura, S., Nagai, R., Kahn, B. B., Kadowaki, T., “Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase”. Journal of Clinical Investigation 8. 1288-1295. 2002.
[38]  Zhou, G. C., Myers, R., Li, Y., Chen, Y., Shen, X., Fenyk-Melody, J., Wu, M., Ventre, J., Doebber, N., Musi, N., Hirshman, M. F., Goodyear, L. J., Mouer, D. E., “Role of AMP−activated protein kinase in mechanism of metformin action”. Journal of Clinical Investigation 108. 1167-1174. 2001.
[39]  Foretz, M., Ancellin, N., Andreelli, F., Saintillan, Y., Grondin, P., Kahn, A., Thorens, B., Vaulont, S., Viollet, B., “Short-term overexpression of a constitutively active form of AMP-activated protein kinase in the liver leads to mild hypoglycemia and fatty liver”. Diabetes 54. 1331-1339. 2005.
[40]  Dev, K. S., Subhashis, B., Todd, D., “Porter Green and black tea extracts inhibit HMG-CoA reductase and activate AMP kinase to decrease cholesterol synthesis in hepatoma cells”. Journal of Nutritional Biochemistry 20. 816-822. 2009.