Journal of Food and Nutrition Research
ISSN (Print): 2333-1119 ISSN (Online): 2333-1240 Website: Editor-in-chief: Prabhat Kumar Mandal
Open Access
Journal Browser
Journal of Food and Nutrition Research. 2015, 3(4), 274-280
DOI: 10.12691/jfnr-3-4-7
Open AccessArticle

Effect of Phytochemicals on the Antioxidative Activity of Brain Lipids in High- and Low-fat-fed Mice and Their Structural Changes during in vitro Digestion

Seung Jae Lee1, Seung Yuan Lee1, Myung-Sub Chung2 and Sun Jin Hur1,

1Department of Animal Science and Technology, Chung-Ang University, Seodong-daero, Daeduk-myeon, Anseong-Si, Gyeonggi, Korea

2Department of Food Science and Technology Chung-Ang University, Seodong-daero, Daedeok-myeon, Anseong-si, Gyeonggi, Korea

Pub. Date: April 27, 2015

Cite this paper:
Seung Jae Lee, Seung Yuan Lee, Myung-Sub Chung and Sun Jin Hur. Effect of Phytochemicals on the Antioxidative Activity of Brain Lipids in High- and Low-fat-fed Mice and Their Structural Changes during in vitro Digestion. Journal of Food and Nutrition Research. 2015; 3(4):274-280. doi: 10.12691/jfnr-3-4-7


The brain lipid samples were collected from the brains of low- and high-fat-fed mice and incubated with the in vitro-digested phytochemicals to determine lipid oxidation. After digestion in the mouth, the 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical-scavenging activity and ferric-reducing antioxidant power (FRAP) of quercetin and catechin were higher than those of rutin. In contrast, ABTS radical-scavenging activity and FRAP were higher in catechin and rutin than in quercetin after digestion in the stomach. The automated oxygen radical absorbance capacity (ORAC) was highest in catechin during in vitro digestion in the brain lipids of both high- and low-fat-fed mice. After digestion in the mouth, the inhibitory effect of rutin lipid oxidation was higher than those of quercetin and catechin, whereas after digestion in the stomach, the inhibitory effect of lipid oxidation in catechin and rutin was stronger than that of quercetin in brain lipids obtained from both low- and high-fat-fed mice.

phytochemicals antioxidant activity mouse brain lipid in vitro digestion

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


[1]  K. K. Adom, M. E. Sorrells and R. H. Liu, Phytochemical Profiles and Antioxidant Activity of Wheat Varieties, J. Agr. Food Chem., 2003, 51, 7825-7834.
[2]  L. R. Howard, S. T. Talcott, C. H. Brenes and B. Villalon, Changes in phytochemical and antioxidant activity of selected pepper cultivars (capsicum species) as influenced by maturity, J. Agr. Food Chem., 2000, 48, 1713-1720.
[3]  K. Wolfe, X. Wu and R. H. Liu, Antioxidant activity of apple peels, J. Agr. Food Chem., 2003, 51, 609-614.
[4]  S. J. Hur, S. J. Park and C. H. Jeong, Effect of buckwheat extract on the antioxidant activity of lipid in mouse brain and its structural change during in vitro human digestion, J Agric Food Chem, 2011, 59, 10699-10704.
[5]  N. C. Cook and S. Samman, Flavonoids—Chemistry, metabolism, cardioprotective effects, and dietary sources, J. Nutr. Biochem., 1996, 7, 66-76.
[6]  H. Zille, M. A. Vian, A. S. Fabiano-Tixier, M. Elmaataoui, O. Dangles and F. Chemat, A remarkable influence of microwave extraction: Enhancement of antioxidant activity of extracted onion varieties, Food Chem., 2011, 127, 1472-1480.
[7]  M. L. Calabro, S. Tommasini, P. Donato, R. Stancanelli, D. Raneri, S. Catania, C. Costa, V. Villari, P. Ficarra and R. Ficarra, The rutin/β-cyclodextrin interactions in fully aqueous solution: spectroscopic studies and biological assays, J. Pharmaceut. Biomed., 2006, 36, 1019-1027.
[8]  V. D. Bokkenheuser, C. H. Shackleton and J. Winter, Hydrolysis of dietary flavonoid glycosides by strains of intestinal Bacteroides from humans, Biochem. J., 1987, 15, 953-956.
[9]  K. Murota and J. Terao, Antioxidative fl avonoid quercetin: implication of its intestinal absorption and metabolism, Arch. Biochem. Biophys., 2001, 417, 12-17.
[10]  C. H. M. Versantvoort, A. G. Oomen, E. Van de Kamp, C. J. M. Rompelberg and A. J. A. M. Sips, Applicability of an in vitro digestion model in assessing the bioaccessibility of mycotoxins from food, Food. Chem. Toxicol., 2005, 43, 31-40.
[11]  S. J. Hur, E. A. Decker and D. J. McClements, Influence of initial emulsifier type on microstructural changes occurring in emulsified lipids during in vitro digestion, Food Chem., 2009, 114, 253-262.
[12]  R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang and C. Rice-Evans, Antioxidant activity applying an improved ABTS radical cation decolorization assay, Free Radical Bio. Med., 1999, 26, 1231-1237.
[13]  C.-H. Jeong, G. N. Choi, J. H. Kim, J. H. Kwak, D. O. Kim, Y. J. Kim and H. J. Heo, Antioxidant activities from the aerial parts of Platycodon grandiflorum, Food Chem., 2010, 118, 278-282.
[14]  I. F. F. Benzie and J. J. Strain, The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": The FRAP assay, Anal. Biochem., 1996, 239, 70-76.
[15]  B. Ou, D. Huang, M. Hampsch-Woodill, J. A. Flanagan and E. K. Deemer, Analysis of antioxidant activities of common vegetables employing oxygen radical absorbance capacity (ORAC) and ferric reducing antioxidant power (FRAP) assays: a comparative study, J. Agr. Food Chem., 2002, 50, 3122-3128.
[16]  S. T. Chang, J. H. Wu, S. Y. Wang, P. L. Kang, N. S. Yang and L. F. Shyur, Antioxidant activity of extracts from acacia confusa bark and heartwood, J. Agr. Food Chem., 2001, 49, 3420-3424.
[17]  K. Ioku, T. Tsushida, Y. Takei, N. Nakatani and J. Terao, Antioxidative activity of quercetin and quercetin monoglucosides in solution and phospholipid bilayers, Biochim. Biophys. Acta (BBA) - Biomembranes, 1995, 1234, 99-104.
[18]  M. J. Bermúdez-Soto, F. A. Tomás-Barberán and M. T. García-Conesa, Stability of polyphenols in chokeberry (Aronia melanocarpa) subjected to in vitro gastric and pancreatic digestion, Food Chem., 2007, 102, 865-874.
[19]  G.-N. Kim, Y.-I. Kwon and H.-D. Jang, Protective mechanism of quercetin and rutin on 2,2′-azobis(2-amidinopropane)dihydrochloride or Cu2+-induced oxidative stress in HepG2 cells, Toxicol. in Vitro., 2011, 25, 138-144.
[20]  K. Murota and J. Terao, Antioxidative flavonoid quercetin: implication of its intestinal absorption and metabolism, Arch. Biochem. Biophys., 2003, 417, 12-17.
[21]  C. Morand, C. Manach, V. Crespy and C. Remesy, Quercetin 3-O-beta-glucoside is better absorbed than other quercetin forms and is not present in rat plasma, Free Radic. Res., 2000, 33, 667-676.
[22]  W. Andlauer, C. Stumpf and P. Furst, Intestinal absorption of rutin in free and conjugated forms, Biochem. Pharmacol., 2001, 62, 369-374.
[23]  G. N. Kim, Y. I. Kwon and H. D. Jan, Protective mechanism of quercetin and rutin on 2,20-azobis(2-amidinopropane) dihydrochloride or Cu2+-induced oxidative stress in HepG2 cells., Toxicology In vitro, 2011, 25, 138-144.
[24]  S. J. Hur, S. J. Park and C. H. Jeong, Effect of buckwheat extract on the antioxidant activity of lipid in mouse brain and its structural change during in vitro human digestion, J. Agr. Food Chem., 2011, 59, 10699-10704.
[25]  M. Ming, L. Guanhua, Y. Zhanhai, C. Guang and Z. Xuan, Effect of the Lycium barbarum polysaccharides administration on blood lipid metabolism and oxidative stress of mice fed high-fat diet in vivo, Food Chem., 2009, 113, 872-877.
[26]  W. Ibrahim, U. S. Lee, C. C. Yeh, J. Szabo, G. Bruckner and C. K. Chow, Oxidative stress and antioxidant status in mouse liver: Effects of dietary lipid, vitamin E and iron, J. Nutr., 1997, 127, 1401-1406.
[27]  C. L. Hsu, C. H. Wu, S. L. Huang and G. C. Yen, Phenolic compounds rutin and o-coumaric acid ameliorate obesity induced by high-fat diet in rats, J. Agr. Food Chem., 2009, 57, 425-431.
[28]  S. J. Hur, S. J. Lee, D. H. Kim, S. C. Chun and S. K. Lee, Onion extract structural changes during in vitro digestion and its potential antioxidant effect on brain lipids obtained from low- and high-fat-fed mice, Free Radic Res, 2013.
[29]  A. Ishisaka, S. Ichikawa, H. Sakakibara, M. K. Piskula, T. Nakamura, Y. Kato, M. Ito, K. Miyamoto, A. Tsuji, Y. kawai and J. Terao, Accumulation of orally administered quercetin in brain tissue and its antioxidative effects in rats, Free Radic. Bio. Med., 2011, 51, 1329-1336.
[30]  M. Fiorani, A. Guidarelli, M. Blasa, C. Azzolini, M. Candiracci, E. Piatti and O. Cantoni, Mitochondria accumulate large amounts of quercetin: prevention of mitochondrial damage and release upon oxidation of the extramitochondrial fraction of the flavonoid, J. Nutr. Biochem., 2010, 21, 397-404.
[31]  V. C. J. DeBoer, A. A. Dihal, H. v. d. Woude, I. C. W. Arts, S. Wolffram, G. M. Alink, I. M. C. Rietjens, J. Keijer and P. C. H. Hollman, Tissue distribution of quercetin in rats and pigs, J. Nutr., 2005, 135, 1718-1725.
[32]  K. Selvakumar, R. L. Prabha, K. Saranya, S. Bavithra, G. Krishnamoorthy and J. Arunakaran, Polychlorinated biphenyls impair blood–brain barrier integrity via disruption of tight junction proteins in cerebrum, cerebellum and hippocampus of female Wistar rats Neuropotential role of quercetin, Hum. Exp. Toxicol., 2012, November 15.
[33]  R. J. Green, A. S. Murphy, B. Schulz, B. A. Watkins and M. G. Ferruzzi, Common tea formulations modulate in vitro digestive recovery of green tea catechins, Mol. Nutr. Food Res., 2007, 51, 1152-1162.
[34]  K. Yoshino, M. Suzuki, K. Sasaki, T. Miyase and M. Sano, Formation of antioxidants from (-)-epigallocatechin gallate in mild alkaline fluids, such as authentic intestinal juice and mouse plasma., J. Nutr. Biochem., 1999, 10, 223-229.
[35]  L. R. Record and J. M. Lane, Simulated intestinal digestion of green and black teas, Food Chem., 2001, 73, 481-486.
[36]  Q. Y. Zhu, A. Zhang, D. Tsang, Y. Huang and Z. Y. Chen, Stability of green tea catechins, J. Agr. Food Chem., 1997, 45, 4624-4628.
[37]  S. T. Talcott and L. R. Howard, Phenolic autoxidation is responsible for color degradation in processed carrot puree, J. Agr. Food Chem., 1999, 47, 2109-2115.