Journal of Food and Nutrition Research
ISSN (Print): 2333-1119 ISSN (Online): 2333-1240 Website: http://www.sciepub.com/journal/jfnr Editor-in-chief: Prabhat Kumar Mandal
Open Access
Journal Browser
Go
Journal of Food and Nutrition Research. 2015, 3(3), 202-205
DOI: 10.12691/jfnr-3-3-12
Open AccessArticle

Rutin Attenuates Lipopolysaccharide-induced Nitric Oxide Production in Macrophage Cells

Seung-Jae Lee1, Seung Yuan Lee1, Hyun Joo Ha2, Seon Heui Cha3, Si Kyung Lee4 and Sun Jin Hur1,

1Department of Animal Science and Technology, Chung-Ang University, Anseong, Korea

2Department of Food Science & Nutrition, Dong-A University, Busan, Korea

3Department of Pharmacology, Ajou University School of Medicine, Suwon, Korea

4Department of Bioresources and Food Science, Konkuk University, Seoul, Korea

Pub. Date: March 24, 2015

Cite this paper:
Seung-Jae Lee, Seung Yuan Lee, Hyun Joo Ha, Seon Heui Cha, Si Kyung Lee and Sun Jin Hur. Rutin Attenuates Lipopolysaccharide-induced Nitric Oxide Production in Macrophage Cells. Journal of Food and Nutrition Research. 2015; 3(3):202-205. doi: 10.12691/jfnr-3-3-12

Abstract

Rutin is the major polyphenol found in buckwheat and can downregulate inflammatory responses in macrophages. However, the underlying mechanism is unclear. Overproduction of nitric oxide (NO) by inducible nitric synthase (iNOS) is closely correlated with inflammation and the pathology of a variety of diseases. It has been reported that rutin inhibited various pro-inflammatory mediators, including cytokine signaling in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophage cells, and suppressed the production of NO and the expression of cyclooxygenase-2 (COX-2) and iNOS protein in LPS-stimulated macrophages. These results suggest that rutin exerts anti-inflammatory effects by suppressing the expression of COX-2 and iNOS in RAW 264.7 macrophage cells. Therefore, rutin can be considered as a functional food for the prevention of various diseases.

Keywords:
anti-inflammation buckwheat macrophage cells nitric oxide rutin

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Koda, T., Kuroda, Y., and Imai, H., “Protective effect of rutin against spatial memory impairment induced by trimethyltin in rats” Nutr Res 28 (9), 629-634. 2008.
 
[2]  Song, K.B., Kim, S.H., Na, J.Y., Park, J.H., Kim, J.K., Kim, J.H., and Kwon, J.K., “Rutin attenuates ethanol-induced neurotoxicity in hippocampal neuronal cells by increasing aldehyde dehydrogenase 2” Food Chem Toxicol 72, 228-233. 2014.
 
[3]  Lee, S.J., Kang, H.W., Lee, S.Y., and Hur, S.J., “Green tea polyphenol epifallocatechin-3-O-gallate attenuates lipopolysaccharide-induced nitric oxide production in raw264.7 cells” J Food Nutr Res 2(7), 425-428. 2014.
 
[4]  Forman, H.J., and Torres, M., “Redox signaling in macrophages” Mol Aspects Med 22 (4-5), 189-216. 2001.
 
[5]  Kim, S., and Ponka, P., “Nitric oxide-mediated modulation of iron regulatory proteins: implication for cellular iron homeostasis” Blood Cells Mol Dis 29 (3), 400-410. 2002.
 
[6]  Fiocchi, C., “Inflammatory bowel disease: Etiology and pathogenesis” Gastroenterology 115 (1), 182-205. 1998.
 
[7]  Rietschel, E.T., Kirikae, T., Schade, F.U., Mamat, U., Schmidt, G., Loppnow, H., Ulmer, A.J., Zähringer, U., Seydel, U., Di-Padova, F., Schreier, M., and Brade, H., “Bacterial endotoxin: molecular relationships of structure to activity and function” FASEB J 8 (2), 217-225. 1994.
 
[8]  Xie, Q.W., Kashiwabara, Y., and Nathan, C., “Role of transcription factor NF-kappa B/Rel in induction of nitric oxide synthase” J Biol Chem 269 (7), 4705-4708. 1994.
 
[9]  Kim, B.W., Koppula, S., Kim, I.S., Lim, H.W., Hong, S.M., Han, S.D., Hwang, B.Y., Choi, D.K., “Anti-neuroinflammatory activity of kamebakaurin from Isodon japonicus via inhibition of c-Jun NH2-terminal kinase and p38 mitogen-activated protein kinase pathway in activated microglial cells” J Pharmacol Sci 116 (3), 296-308. 2011.
 
[10]  Ma, J.S., Kim, W.J., Kim, J.J., Kim, T.J., Ye, S.K., Song, M.D., Kang, H., Kim, D.W., Moon, W.K., and Lee, K.H., “Gold nanoparticles attenuate LPS-induced NO production through the inhibition of NF-κB and IFN-b/STAT1 pathways in RAW264.7 cells” Nitric Oxide 23 (3), 214-219. 2010.
 
[11]  Lee, S.J., Kim, E.K., Kim, Y.S., Hwang, J.W., Lee, K.H., Choi, D.K., Kang, H., Moon, S.H., Jeon, B.T., and Park, P.J., “Purification and characterization of a nitric oxide inhibitory peptide from Ruditapes philippinarum” Food Chem Toxicol 50 (5), 1660-1666. 2012.
 
[12]  Mariathasan, S., and Monack, D.M., “Inflammasome adaptors and sensors: Intracellular regulators of infection and inflammation” Nat Rev Immunol 7 (1), 31-40. 2007.
 
[13]  Walsh, L.J., “Mast cells and oral inflammation” Crit Rev Oral Biol Med 14 (3), 188-198. 2003.
 
[14]  Kang, S.R., Park, K.I., Park, H.S., Lee, D.H., Kim, J.A., Nagappan, A., Kim, E.H., Lee, W.S., Shin, S.C., Park, M.K., Han, D.Y., Kim, and G.S., “Anti-inflammatory effect of flavonoids isolated from Korea Citrus aurantium L. on lipopolysaccharide-induced mouse macrophage RAW 264.7 cells by blocking of nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) signalling pathways” Food Chem 129(4), 1721-1728. 2011.
 
[15]  Kim, B.C., Choi, J.W., Hong, H.Y., Lee, S.A., Hong, S., Park, E.H., Kim, S.J., and Lim, C.J., “Heme oxygenase-1 mediates the anti-inflammatory effect of mushroom Phellinus linteus in LPS-stimulated RAW264.7 macrophages” J Ethnopharmacol 106 (3), 364-371. 2006.
 
[16]  Son, C.G., Shin, J.W., Cho, J.H., Cho, C.K., Yun, C.H., Chung, W.T., and Han, S.H., “Macrophage activation and nitric oxide production by water soluble components of Hericium erinaceumInt Immunopharmacol 6 (8), 1363-1369. 2006.
 
[17]  Nguyen, T.A., Liu, B., Zhao, J., Thomas, D.S., Hook, J.M., “An investigation into the supramolecular structure, solubility, stability and antioxidant activity of rutin/cyclodextrin inclusion complex” Food Chem 136 (1), 186-192. 2013.
 
[18]  Selloum, L., “Anti-inflammatory effect of rutin on rat paw oedema, and on neutrophils chemotaxis and degranulation” Exp Toxicol Pathol 54 (4), 313-318. 2003.
 
[19]  Jung, C.H., Lee, J.Y., Cho, C.H., and Kim, C.J. “Anti-asthmatic action of quercetin and rutin in conscious guinea-pigs challenged with aerosolized ovalbumin” Arch Pharm Res 30 (12), 1599-1607. 2007.
 
[20]  Park, S.Y., Bok, S.H., Jeon, S.M., Park, Y.B., Lee, S.J., Jeong, T.S., and Choi, M.S., “Effect of rutin and tannic acid supplements on cholesterol metabolism in rats” Nutr Res 22 (3), 283-295. 2002.
 
[21]  Guardia, T., Rotelli, A.E., Juarez, A.O., and Pelzer, L.E., “Anti-inflammatory properties of plant flavonoids. Effects of rutin, quercetin and hesperidin on adjuvant arthritis in rat” Farmaco 56 (9), 683-687. 2001.
 
[22]  Khan, M.M., Ahmad, A., Ishrat, T., Khuwaja, G., Srivastawa, P., Khan, M. B., Raza, S.S., Javed, H., Vaibhav, K., Khan, A., and Islam, F., “Rutin protects the neural damage induced by transient focal ischemia in rats” Brain Res 1292, 123-135. 2009.
 
[23]  Shen, S.R., Hsu, W.H., Lee, C.C., Chang, W.C., and Wu, S.C., “Buckwheat extracts (Fagopyrum tataricum) and rutin attenuate Th2 cytokines production and cellular allergic effects in vitro and in vivoJ Funct Foods, 4 (4), 793-799. 2012.