Journal of Food and Nutrition Research
ISSN (Print): 2333-1119 ISSN (Online): 2333-1240 Website: http://www.sciepub.com/journal/jfnr Editor-in-chief: Prabhat Kumar Mandal
Open Access
Journal Browser
Go
Journal of Food and Nutrition Research. 2015, 3(3), 146-151
DOI: 10.12691/jfnr-3-3-3
Open AccessArticle

The Study of Variation of Phloridzin Content in Six Wild Malus Species

Jianmin Tang1, Liang Tang2, 3, Si Tan2 and Zhiqin Zhou2, 3,

1College of Life Science & Forestry, Chongqing University of Art & Science, Chongqin, China

2College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China

3Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, Chongqing, China

Pub. Date: March 02, 2015

Cite this paper:
Jianmin Tang, Liang Tang, Si Tan and Zhiqin Zhou. The Study of Variation of Phloridzin Content in Six Wild Malus Species. Journal of Food and Nutrition Research. 2015; 3(3):146-151. doi: 10.12691/jfnr-3-3-3

Abstract

Phloridzin is relatively abundant in species of genus Malus Miller, of which China is the most important origin and diversification center. In this study, phloridzin contents in fruits and leaves of six wild Malus species were analyzed using a RP-HPLC system. The phloridzin content varied significantly among species. The highest phloridzin content in fruits was found in M. xiaojinensis (0.63 mg/100mg), whereas the lowest in M. maerkangensis (0.04 mg/100mg); meanwhile, the highest phloridzin content in leaves was found in M. transitoria (14.36mg/100mg), whereas the lowest in M. kansuensis (4.08 mg/100mg). Interestingly, phloridzin content showed no significant distinction among different populations of M. toringoides, however, there is a wide range of variation among individuals of the same wild Malus species. Different genetic constitution is the most likely reason for variation of phloridzin content among species, whereas variation among individual may be caused by heterogeneous environmental factors. Our preliminary study provides important information for potential novel utilization of wild apple germplasm in China.

Keywords:
genus Malus phloridzin content germplasm utilization

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Awad, M.A., De Jager, A. and van Westing, L.M. Flavonoid and chlorogenic acid levels in apple fruit: characterisation of variation. Scientia horticulturae 83: 249-263. Mar. 2000.
 
[2]  Cheng, M.H., Li X.L. & Zhang Y.G. Malus xiaojinensis Cheng and Jiang - A promising stock for apple trees. Journal of Southwest Agricultural University 22: 383-386.Sep. 2000.
 
[3]  Cheng, M.H., Liang, G.L., Shi, S.Y., Zhou, Z.Q. and Li, X.L. Studies on population differentiation of Malus toringoides Hughes and origin of Malus maerkangesis Cheng et al.. Journal of Southwest Agricultural University 25: 1-4.Jan.2003.
 
[4]  Cheng, M.H., Zhang, Y.G., Zhou, Z.Q. and Li, X.L. A study on population differentiation of Malus toringoides Hughes and origin of M. setok Vass. Journal of Southwest Agricultural University 24: 515-517. Nov. 2002.
 
[5]  Ehrenkranz, J.R.L., Lewis, N.G., Kahn, C.R. and Roth, J. Phlorizin: a review. Diabetes/Metabolism Research and Reviews 21: 31-38. Dec. 2004.
 
[6]  Fromm, M., Bayha, S., Carle, R. and Kammerer, D.R. Characterization and quantitation of low and high molecular weight phenolic compounds in apple seeds. Journal of Agricultural and Food Chemistry 60: 1232-1242. Jan. 2012
 
[7]  Gosch, C., Flachowsky, H., Halbwirth, H., Thill, J., Mjka-wittmann, R., Treutter, D., Richter, K., Hanke, M.V. and Stich, K. Substrate specificity and contribution of the glycosyltransferase UGT71A15 to phloridzin biosynthesis. Trees 26: 259-271. Dec. 2011.
 
[8]  Gosch, C., Halbwirth, H., Kuhn, J., Miosic, S. and Stich, K. Biosynthesis of phloridzin in apple (Malus domestica Borkh.). Plant Science 176: 223-231. Feb. 2009.
 
[9]  Gosch, C., Halbwirth, H. and Stich, K. Phloridzin: Biosynthesis, distribution and physiological relevance in plants. Phytochemistry 71: 838-843. Jun. 2010.
 
[10]  Jham, G.N. High-performance liquid chromatographic quantitation of phloridzin in apple seed, leaf and callus. Journal of Chromatography A 719: 444-449. Jan. 1996.
 
[11]  Kobori, M., Masumoto, S., Akimoto, Y. and Oike, H. Phloridzin reduces blood glucose levels and alters hepatic gene expression in normal BALB/c mice. Food and Chemical Toxicology 50: 2547-2553. Jul. 2012.
 
[12]  Lata, B., Trampczynska, A. and Paczesna, J. Cultivar variation in apple peel and whole fruit phenolic composition. Scientia Horticulturae,121: 176-181. Jun. 2009.
 
[13]  LI, Y.N. Researches of germplasm resources of Malus Mill. Beijing: Agriculture Press, 2001, 389-390.
 
[14]  Manzano, S. and Williamson, G. Polyphenols and phenolic acids from strawberry and apple decrease glucose uptake and transport by human intestinal Caco-2 cells. Molecular Nutrition and Food Research 54: 1773-1780. Jun. 2010.
 
[15]  Mayr, U., Treutter, D., Santos-buelga, C., Bauer, H. and Feucht, W. Developmental changes in the phenol concentrations of ‘Golden delicious’ apple fruits and leaves. Phytochemistry 38: 1151-1155. Mar. 1995.
 
[16]  Mikulic-petkovsek, M., Slatnar, A., Stampar, F. and Veberic, R. Phenolic compounds in apple leaves after infection with apple scab. Biologia Plantarum 55: 725-730. Dec. 2011.
 
[17]  Schlag, E.M. and Mcintosh, M.S. Ginsenoside content and variation among and within American ginseng (Panax quinquefolius L.) populations. Phytochemistry 67: 1510-1519. Jul. 2006.
 
[18]  Shi, S.Y., Cheng, M.H. and Liang, G.L. Malus toringoides (Rehd.) Hughes - A promising stock for apple trees. Journal of Southwest Agricultural University 26: 51-54. Jan. 2004.
 
[19]  Tang, L., Li, J., Tan, S., Li, M.X., Ma, X. and Zhou, Z.Q. New insights into the hybrid origin of Malus toringoides and its close relatives based on a single-copy nuclear gene SbeI and three chloroplast fragments. Journal of Systematics and Evolution 52: 477-486. Mar. 2014.
 
[20]  Tsao, R., Yang, R., Christopher, J., Zhu, Y. and Zhu, H.H. Polyphenolic profiles in eight apple cultivars using high-performance liquid chromatography (HPLC). Journal of Agricultural and Food Chemistry 51: 6347-6353. Sep. 2003.
 
[21]  Wojdylo, A., Oszmianski, J. and Laskowski, P. Polyphenolic compounds and antioxidant activity of new and old apple varieties. Journal of Agricultural and Food Chemistry 56: 6520-6530. Jul. 2008.
 
[22]  Wu, J.H., Gao, H.Y., Zhao, L., Liao, X.J., Chen, F., Wang, Z.F. and Hu, X.S. Chemical compositional characterization of some apple cultivars. Food Chemistry 103: 88-93. Jul. 2007.
 
[23]  Xiang, L., Sun, K.Y., Lu, J., Weng, Y.F., Taoka, A., Sakagami, Y. and Qi, J.H. Anti-aging effects of Phloridzin, an apple polyphenol, on yeast via the SOD and Sir2 genes. Bioscience Biotechnology and Biochemistry 75: 854-858. Feb. 2011.
 
[24]  Yu, D.J. and Gu, C.Z. Malus Mill. In: Yu D J, Lu L T, Gu C Z, Guan K J, Jiang W F, ed., Flora Reipublicae Popularis Sinicae. Science Press, Beijing, 1974, 372-402.
 
[25]  Zhang, X.Z., Zhao, Y., Li, C.M., Chen, D.M, Wang, G.P, Chang, R,F. and Shu, H.R. Potential polyphenol markers of phase change in apple (Malus domestica). Journal of Plant Physiology 164: 574-580. May. 2007.
 
[26]  Zhao, H., Yakar, S., Gavrilova, O., Sun, H., Zhang, Y., Kim, H., Setser, J., Jou, W. and Leroith, D. Phloridzin improves hyperglycemia but not hepatic insulin resistance in a transgenic mouse model of type 2 diabetes. Diabetes 53: 2901-2909. Mar. 2004.
 
[27]  Zhou, Z.Q. The apple genetic resources in China: the wild species and their distributions, informative characteristics and utilisation. Genetic Resources and Crop Evolution 46: 599-609. Dec. 1999.