Journal of Food and Nutrition Research
ISSN (Print): 2333-1119 ISSN (Online): 2333-1240 Website: Editor-in-chief: Prabhat Kumar Mandal
Open Access
Journal Browser
Journal of Food and Nutrition Research. 2014, 2(12), 1007-1014
DOI: 10.12691/jfnr-2-12-23
Open AccessArticle

Purification, Physicochemical Characterization, and Bioactivities of Polysaccharides from Puerh Tea

Limin Mao1, 2, Shuhong Shao1, Shili Sun3, Yuefei Wang1, 2, Ping Xu1 and Liewei Cai1, 4,

1Department of Tea Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, China

2Zhejiang Tea Science Society, Hangzhou, China

3Drinkable Plants Institute (Tea Research Center)/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Guangzhou, China

4Zhangzhou College of Science & Technology, Zhangzhou, China

Pub. Date: December 02, 2014

Cite this paper:
Limin Mao, Shuhong Shao, Shili Sun, Yuefei Wang, Ping Xu and Liewei Cai. Purification, Physicochemical Characterization, and Bioactivities of Polysaccharides from Puerh Tea. Journal of Food and Nutrition Research. 2014; 2(12):1007-1014. doi: 10.12691/jfnr-2-12-23


Two fractions of polysaccharides, named PTPS-1 and PTPS-2, was extracted and purified from puerh tea by Sephacryl S-300 column chromatography. The physicochemical properties of these two polysaccharides were investigated by high-performance liquid chromatography (HPLC), Fourier Transform IR spectra, scanning electron microscope (SEM) and atomic force microscope (AFM). Analysis of chemical compositions (protein, neutral sugars, uronic acid and monosaccharide composition) suggested that they were both kinds of acid heteropolysaccharides bound with protein, and contained seven monosaccharides with different molar ratio. Meanwhile, evaluation of antioxidant activities by in vitro assays of DPPH, ABTS and FRAP showed that PTPS-1 demonstrated stronger antioxidant ability than PTPS-2. Similarly, PTPS-1 exhibited remarkable inhibitory potential on α-glycosidase in vitro, significantly stronger than that of PTPS-2 and acarbose. Moreover, the results from animal test indicated PTPS-1 possessed significant inhibition on postprandial hyperglycemia in diabetic mice compared with the model group.

puerh tea polysaccharides purification antioxidant activity α-glycosidase inhibition physicochemical characterization

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


Figure of 7


[1]  Aguiree, F., Brown, A., Cho, N. H., Dahlquist, G., Dodd, S., Dunning, T., Hirst, M., Hwang, C., Magliano, D., & Patterson, C. (2013). IDF Diabetes Atlas.
[2]  Aloulou, A., Hamden, K., Elloumi, D., Ali, M. B., Hargafi, K., Jaouadi, B., Ayadi, F., Elfeki, A., & Ammar, E. (2012). Hypoglycemic and antilipidemic properties of kombucha tea in alloxan-induced diabetic rats. Bmc Complementary and Alternative Medicine, 12, 63.
[3]  Apostolidis, E., & Lee, C. M. (2010). In Vitro Potential of Ascophyllum nodosum Phenolic Antioxidant-Mediated alpha-Glycosidase and alpha-Amylase Inhibition. Journal of Food Science, 75 (3), H97-H102.
[4]  Benzie, I. F. F., & Strain, J. J. (1999). Ferric reducing antioxidant power assay: Direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Oxidants and Antioxidants, Pt A, 299, 15-27.
[5]  Bitter, T., & Muir, H. M. (1962). A Modified Uronic Acid Carbazole Reaction. Analytical Biochemistry, 4 (4), 330-&.
[6]  Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248-254.
[7]  Cai, Y. Z., Luo, Q., Sun, M., & Corke, H. (2004). Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sciences, 74 (17), 2157-2184.
[8]  Chen, H. X., Zhang, M., Qu, Z. S., & Xie, B. J. (2008). Antioxidant activities of different fractions of polysaccharide conjugates from green tea (Camellia Sinensis). Food Chemistry, 106 (2), 559-563.
[9]  Chen, H. X., Zhang, M., & Xie, B. J. (2004). Quantification of uronic acids in tea polysaccharide conjugates and their antioxidant properties. Journal of Agricultural and Food Chemistry, 52 (11), 3333-3336.
[10]  Chopade, V., Phatak, A., Upaganlawar, A., & Tankar, A. (2008). Green tea (Camellia sinensis): Chemistry, traditional, medicinal uses and its pharmacological activities-a review. Pharmacognosy Reviews, 2 (3), 157.
[11]  Ding, X. A., Feng, S., Cao, M., Li, M. T., Tang, J., Guo, C. X., Zhang, J., Sun, Q., Yang, Z. R., & Zhao, J. A. (2010). Structure characterization of polysaccharide isolated from the fruiting bodies of Tricholoma matsutake. Carbohydrate Polymers, 81 (4), 942-947.
[12]  Dong, H. Q., Li, M., Zhu, F., Liu, F. L., & Huang, J. B. (2012). Inhibitory potential of trilobatin from Lithocarpus polystachyus Rehd against alpha-glycosidase and alpha-amylase linked to type 2 diabetes. Food Chemistry, 130 (2), 261-266.
[13]  Eom, S. H., Lee, S. H., Yoon, N. Y., Jung, W. K., Jeon, Y. J., Kim, S. K., Lee, M. S., & Kim, Y. M. (2012). alpha-Glycosidase- and alpha-amylase-inhibitory activities of phlorotannins from Eisenia bicyclis. Journal of the Science of Food and Agriculture, 92 (10), 2084-2090.
[14]  Foschiatti, M., Hearshaw, M., Cescutti, P., Ravenscroft, N., & Rizzo, R. (2009). Conformational studies of the capsular polysaccharide produced by Neisseria meningitidis group A. Carbohydrate Research, 344 (7), 940-943.
[15]  Giovanelli, G., & Buratti, S. (2009). Comparison of polyphenolic composition and antioxidant activity of wild Italian blueberries and some cultivated varieties. Food Chemistry, 112 (4), 903-908.
[16]  Han, Q. A., Yu, Q. Y., Shi, J. A., Xiong, C. Y., Ling, Z. J., & He, P. M. (2011). Structural Characterization and Antioxidant Activities of 2 Water-Soluble Polysaccharide Fractions Purified from Tea (Camellia sinensis) Flower. Journal of Food Science, 76 (3), C462-C471.
[17]  Heo, S. J., Hwang, J. Y., Choi, J. I., Han, J. S., Kim, H. J., & Jeon, Y. J. (2009). Diphlorethohydroxycarmalol isolated from Ishige okamurae, a brown algae, a potent alpha-glycosidase and alpha-amylase inhibitor, alleviates postprandial hyperglycemia in diabetic. European Journal of Pharmacology, 615 (1-3), 252-256.
[18]  Huang, Q., Chen, S., Chen, H., Wang, Y., Hochstetter, D., & Xu, P. (2013). Studies on the bioactivity of aqueous extract of pu-erh tea and its fractions: in vitro antioxidant activity and alpha-glycosidase inhibitory property, and their effect on postprandial hyperglycemia in diabetic mice. Food and Chemical Toxicology, 53, 75-83.
[19]  Iso, H., Date, C., Wakai, K., Fukui, M., Tamakoshi, A., & Grp, J. S. (2006). The relationship between green tea and total caffeine intake and risk for self-reported type 2 diabetes among Japanese adults. Annals of Internal Medicine, 144 (8), 554-562.
[20]  Jie, G. L., Lin, Z., Zhang, L. Z., Lv, H. P., He, P. M., & Zhao, B. L. (2006). Free radical scavenging effect of Pu-erh tea extracts and their protective effect on oxidative damage in human fibroblast cells. Journal of Agricultural and Food Chemistry, 54 (21), 8058-8064.
[21]  Kaviarasan, S., Naik, G. H., Gangabhagirathi, R., Anuradha, C. V., & Priyadarsini, K. I. (2007). In vitro studies on antiradical and antioxidant activities of fenugreek (Trigonella foenum graecum) seeds. Food Chemistry, 103 (1), 31-37.
[22]  Kuda, T., & Ikemori, T. (2009). Minerals, polysaccharides and antioxidant properties of aqueous solutions obtained from macroalgal beach-casts in the Noto Peninsula, Ishikawa, Japan. Food Chemistry, 112 (3), 575-581.
[23]  Lin, J. K., & Lin-Shiau, S. Y. (2006). Mechanisms of hypolipidemic and anti-obesity effects of tea and tea polyphenols. Molecular Nutrition & Food Research, 50 (2), 211-217.
[24]  Lv, H. P., Lin, Z., Tan, J. F., & Guo, L. (2013). Contents of fluoride, lead, copper, chromium, arsenic and cadmium in Chinese Pu-erh tea. Food Research International, 53 (2), 938-944.
[25]  Lv, Y., Yang, X. B., Zhao, Y., Ruan, Y., Yang, Y., & Wang, Z. Z. (2009). Separation and quantification of component monosaccharides of the tea polysaccharides from Gynostemma pentaphyllum by HPLC with indirect UV detection. Food Chemistry, 112 (3), 742-746.
[26]  Marszalek, P. E., & Dufrene, Y. F. (2012). Stretching single polysaccharides and proteins using atomic force microscopy. Chemical Society Reviews, 41 (9), 3523-3534.
[27]  Mohsen, S. M., & Ammar, A. S. M. (2009). Total phenolic contents and antioxidant activity of corn tassel extracts. Food Chemistry, 112 (3), 595-598.
[28]  Morris, D. L. (1948). Quantitative Determination of Carbohydrates With Dreywood's Anthrone Reagent. Science, 107 (2775), 254-255.
[29]  Muller, D. J., & Dufrene, Y. F. (2011). Atomic force microscopy: a nanoscopic window on the cell surface. Trends in Cell Biology, 21 (8), 461-469.
[30]  Nie, S. P., & Xie, M. Y. (2011). A review on the isolation and structure of tea polysaccharides and their bioactivities. Food Hydrocolloids, 25 (2), 144-149.
[31]  Ortiz-Andrade, R. R., Garcia-Jimenez, S., Castillo-Espana, P., Ramirez-Avila, G., Villalobos-Molina, R., & Estrada-Soto, S. (2007). alpha-glycosidase inhibitory activity of the methanolic extract from Tournefortia hartwegiana: An anti-hyperglycemic agent. Journal of Ethnopharmacology, 109 (1), 48-53.
[32]  Ratner, R. E. (2001). Controlling postprandial hyperglycemia. American Journal of Cardiology, 88 (), 26-31.
[33]  Sevag, M., Lackman, D. B., & Smolens, J. (1938). The isolation of the components of streptococcal nucleoproteins in serologically active form. Journal of Biological Chemistry, 124 (2), 425-436.
[34]  Shi, J. Y., Gong, J. Y., Liu, J., Wu, X. Q., & Zhang, Y. (2009). Antioxidant capacity of extract from edible flowers of Prunus mume in China and its active components. Lwt-Food Science and Technology, 42 (2), 477-482.
[35]  Soares, J. R., Dinis, T. C. P., Cunha, A. P., & Almeida, L. M. (1997). Antioxidant activities of some extracts of Thymus zygis. Free Radical Research, 26 (5), 469-478.
[36]  Song, Y., Manson, J. E., Buring, J. E., Sesso, H. D., & Liu, S. (2005). Associations of dietary flavonoids with risk of type 2 diabetes, and markers of insulin resistance and systemic inflammation in women: a prospective study and cross-sectional analysis. Journal of the American College of Nutrition, 24 (5), 376-384.
[37]  Tao, F., Biao, G. Z., Yu, J. Z., & Ning, Z. H. (2008). Isolation and characterization of an acidic polysaccharide from Mesona Blumes gum. Carbohydrate Polymers, 71 (2), 159-169.
[38]  Wang, Y. F., Shao, S. H., Xu, P., Chen, H., Lin-Shiau, S. Y., Deng, Y. T., & Lin, J. K. (2012). Fermentation process enhanced production and bioactivities of oolong tea polysaccharides. Food Research International, 46 (1), 158-166.
[39]  Wang, Y. F., Xian, J. H., Xi, X. G., & Wei, X. L. (2013). Multi-fingerprint and quality control analysis of tea polysaccharides. Carbohydrate Polymers, 92 (1), 583-590.
[40]  Wu, S. C., Yen, G. C., Wang, B. S., Chiu, C. K., Yen, W. J., Chang, L. W., & Duh, P. D. (2007). Antimutagenic and antimicrobial activities of pu-erh tea. Lwt-Food Science and Technology, 40 (3), 506-512.
[41]  Xu, P., Chen, H., Wang, Y. Q., Hochstetter, D., Zhou, T., & Wang, Y. F. (2012). Oral Administration of Puerh Tea Polysaccharides Lowers Blood Glucose Levels and Enhances Antioxidant Status in Alloxan-Induced Diabetic Mice. Journal of Food Science, 77 (11), H246-H252.
[42]  Xu, P., Wu, J., Zhang, Y., Chen, H., & Wang, Y. F. (2014). Physicochemical characterization of puerh tea polysaccharides and their antioxidant and alpha-glycosidase inhibition. Journal of Functional Foods, 6, 545-554.
[43]  Yang, T. Y., Chou, J. I., Ueng, K. C., Chou, M. Y., Yang, J. J., Lin-Shiau, S. Y., Hu, M. E., & Lin, J. K. (2014). Weight Reduction Effect of Puerh Tea in Male Patients with Metabolic Syndrome. Phytotherapy Research.
[44]  Yao, Y., Sang, W., Zhou, M. J., & Ren, G. X. (2010). Antioxidant and alpha-Glycosidase Inhibitory Activity of Colored Grains in China. Journal of Agricultural and Food Chemistry, 58 (2), 770-774.