Journal of Food and Nutrition Research
ISSN (Print): 2333-1119 ISSN (Online): 2333-1240 Website: Editor-in-chief: Prabhat Kumar Mandal
Open Access
Journal Browser
Journal of Food and Nutrition Research. 2014, 2(10), 659-663
DOI: 10.12691/jfnr-2-10-1
Open AccessArticle

Lipase Production by Aspergillus niger 11T53A14 in Wheat Bran Using Experimental Design Methodology

Regiane Ribeiro dos Santos1, Lívia Nolasco Macedo Muruci1, Mônica Caramez Triches Damaso2, Janine Passos Lima da Silva3 and Lucielen Oliveira Santos4,

1Department of Food Technology, Institute of Technology, UFRRJ (Rural Federal University of Rio de Janeiro), Seropédica, RJ, Brazil

2Embrapa Agroenergy, Parque Estação Biológica, - PqEB s/n - W3 Norte, Brasília, DF, Brazil

3Embrapa Food Technology, Av. das Américas, Rio de Janeiro, RJ, Brazil

4College of Chemical and Food, FURG (Federal University of Rio Grande), Rio Grande, RS, Brazil

Pub. Date: September 19, 2014

Cite this paper:
Regiane Ribeiro dos Santos, Lívia Nolasco Macedo Muruci, Mônica Caramez Triches Damaso, Janine Passos Lima da Silva and Lucielen Oliveira Santos. Lipase Production by Aspergillus niger 11T53A14 in Wheat Bran Using Experimental Design Methodology. Journal of Food and Nutrition Research. 2014; 2(10):659-663. doi: 10.12691/jfnr-2-10-1


Lipases have various industrial applications and their production by filamentous fungi in solid state fermentation (SSF) process is of interest. In this work the lipase enzyme production by the mutant Aspergillus niger 11T51A14, which is a well-known lipase producer was studied using wheat bran as substrate. Microorganism used in fermentation process was inoculated at a concentration of 107 spores/gm into the medium containing nitrogen (ammonium sulfate), sunflower soapstock and wheat bran. The SSF process for enzyme production was carried out in aerated columns immersed in a water bath at 32ºC for 72 h. The process was studied using a central composite rotatable design 22, where variables tested were the nitrogen concentration (0.32-0.88 % w/w) and the volume of liquid (60.9-89.1 mL). The lipase activity was analyzed in enzymatic extracts. The wheat bran, in the fermentation medium, acted as a carbohydrate source and as an inducer for the lipase production. The maximum enzyme activity found was 153.4 U/gdm, with a nitrogen concentration of 0.6 % and 89.1 mL of volume of liquid. The response surface model demonstrated that higher volume of liquid had a positive effect in lipase activity, while nitrogen concentration showed an optimal range (0.4-0.6%).

soapstock solid state fermentation fungi agroindustrial waste

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


[1]  Gupta, R., Gupta, N. and Rathi P. “Bacterial lipases: an overview of production, purification and biochemical properties”. Appl Microbiol Biotechnol, 64. 763-781. 2004.
[2]  Joseph, B., Ramteke, P.W. and Thomas, G. “Cold active microbial lipases: some hot issues and recent developments”. Biotechnol Adv. 26. 457-470. 2008.
[3]  Jaeger, E.K. and Eggert, T. “Lipase for biotechnology”. Curr Opin Biotech. 13. 390-397. 2002.
[4]  Contesini, F.J., Lopes, D.B., Macedo, G.A., Nascimento, M.G. and Carvalho, P.O. “Aspergillus sp. lipase: Potential biocatalyst for industrial use”. J Mol Catal B: Enzym. 67. 163-171. 2010.
[5]  Castilho, L.R., Polato, C.M.S., Baruque, E.A., Sant’anna, G.L. and Freire, D.M.G. “Economic analysis of lipase production by Penicillium restrictum in solid-state and submerged fermentations”. Biochem Eng J. 4. 239-247. 2000.
[6]  Dalmau, E., Montesinos, J.L., Lotti, M. and Casas, C. “Effect of different carbon source on lipase production by Candida rugosa. Enzyme Microb Tech. 26. 657-663. 2000.
[7]  Balaji, V. and Ebeneze, P. “Optimization of extracellular lipase production in Colletotrichum gloeosporioides by solid state fermentation”. Indian J Sci Technol. 1. 1-8. 2008.
[8]  Colin, V.L., Baigori, M.D. and Pera, L.M “Effect of environmental conditions on extracellular lipases production and fungal morphology from Aspergillus niger MYA 135”. J Basic Microb 50. 52-58. 2010.
[9]  Ferraz, L.R., Oliveira, D.S., Silva, M.F., Rigo, E., Luccio, M., Oliveira, J.V., Oliveira, D., Treichel, H. “Production and partial characterization of multifunctional lipases by sporobolomyces ruberrimus using soybean meal, rice meal and sugarcane bagasse as substrates”. Biocatal Agric Biotechnol. 1. 243-252. 2012.
[10]  Tan, T., Zhang, M., Wang, B., Ying, C. and Deng, L. “Screening of high lipase producing Candida sp. and production of lipase by fermentation”. Process Biochem. 39. 459-465. 2003.
[11]  Mahadik, N.D., Puntambekar, U.S., Bastawde, K.B., Khire, J.M. and Gokhale, D.V. “Production of acidic lipase by Aspergillus niger in solid state fermentation”. Process Biochem. 38. 715-721. 2002.
[12]  Jayaprakash, A. and Ebenezer, P. “Investigation on extracellular lipase production by Aspergillus japonicus isolated from the paper nest of Ropalidia marginata”. Indian J Sci Technol. 3. 113-117. 2010.
[13]  Joshi, C. and Khare, S.K. “Purification and characterization of Pseudomonas aeruginosa lipase produced by SSF of deoiled jatropha seed cake”. Biocatal Agr Biotech. 2. 32-37. 2012.
[14]  Damaso, M.C.T., Passianoto, M.A., Freitas, S.C., Freire, D.M.G., Lago, R.C.A. and Couri, S. “Utilization of agroindustrial residues for lipase production by solid-state fermentations”. Braz J Microb. 39. 676-681. 2008.
[15]  Pandey, A. “Solid-state fermentation”. Biochem Eng J. 13. 81-84. 2003.
[16]  Pandey, A. “Recent process developments in solid – state fermentation”. Process Biochem. 27. 109-117. 1992.
[17]  Holker, U., Lenz, J. “Solid-state fermentation - are there any biotechnological advantages?” Curr Opin Microbiol. 8. 301-306. 2005.
[18]  El-Bendary, M.A. “Production of mosquitocidal Bacillus sphaericus by solid state fermentation using agricultural wastes” World J Microb Biot. 26. 153-159. 2010.
[19]  Pandey, A., Soccol, C.R. and Mitchell, D. “New developments in solid state fermentation: I-bioprocesses and products”. Process Biochem. 35. 1153-1169. 2000
[20]  Salihu, A., Alam, M.Z., AbdulKarim, M.I., Salleh, H.M. “Lipase production: An insight in the utilization of renewable agricultural residues”. Resour Conserv Recy. 58. 36-44. 2012.
[21]  Mussatto, S.I. Biotechnological potential of brewing industry by-products. In: Singh nee’ Nigam P, Pandey A (eds) Biotechnology for agro-industrial residues utilization. Springer, 2009, 313-326.
[22]  Gutarra, M.L.E., Godoy, M.G., Maugeri, F., Rodrigues, M.I., Denise, M.G.F. and Castilho, L.R. “Production of an acidic and thermostable lipase of the mesophilic fungus Penicillium simplicissimum by solid-state fermentation”. Bioresource Technol. 100. 5249-5254. 2009.
[23]  Colla, L.M., Rizzardi, J., Pinto, M.H., Reinehr, C.O., Bertolin, T.E. and Costa, J.A.V. “Simultaneous production of lipases and biosurfactants by submerged and solid-state bioprocesses”. Bioresour Technol. 101. 8308-8314. 2010.
[24]  Salihu, A., Alam, M.Z., AbdulKarim, M.I. and Salleh, H.M. “Optimization of lipase production by Candida cylindracea in palm oil mill effluent based medium using statistical experimental design”. J Mol Catal B: Enzym. 69. 66-73. 2011.
[25]  Silveira, C.M. and Furlong, E.B. “Caracterização de compostos nitrogenados presentes em farelos fermentados em estado sólido”. Ciênc Tecnol Aliment. 27. 805-811. 2007.
[26]  AOAC (1995) Official methods of analysis of the Association of Official Analytical Chemists (method 920.39, C). Arlington: A.O.A.C., 10-12.
[27]  AOCS (2012) Official methods and recommended practices of the American Oil Chemists Society. USA
[28]  Couri, S. and Farias, A.X. “Genetic manipulation of Aspergillus niger for increased synthesis of pectinolytic enzymes”. Rev Microbiol. 26. 314-317. 1995.
[29]  Couri, S., Terzi, S.C., Pinto, G.A.S., Freitas, S.P. and Costa, A.C.A. “Hydrolytic enzyme production in solid-state fermentation by Aspergillus niger 3T5B8”. Process Biochem. 36. 255-261. 2000.
[30]  Pereira, C.I., Crespo, M.T.B. and Romão, M.V.S. “Evidence for proteolytic activity and biogenic amines production in Lactobacillus curvatus and L. homohiochii. Int J Food Microbiol. 68. 211-216. 2001.
[31]  Edwinoliver, N.G., Thirunavukarasu, K., Naidu, R.B., Gowthaman, M.K., Kambe, T.N., Kamini, N.R. “Scale up of a novel tri-substrate fermentation for enhanced production of Aspergillus niger lipase for tallow hydrolysis”. Bioresour Technol. 101. 6791-6796. 2010.
[32]  Jager, S., Brumbauer, A., Fehér, E., Réczey, K. and Kiss, L. “Production and Characterization of β- glucosidase from different Aspergillus strains”. World J Microb Biot. 17. 455-461. 2001.
[33]  Gomathi, D., Muthulaskshmi, C., Guru Kumar, D., Ravikumar, G., Kalaiselvi, M., Uma, C. “Submerged fermentation of wheat bran by Aspergillus flavus for production and characterization of carboxy methyl cellulose”. Asian Pac J Trop Biomed. S67-S73. 2012.
[34]  Sharma, S., Kaur, S., Dar, B.N. and Singh, B. “Storage stability and quality assessment of processed cereal brans”. J Food Sci Technol. 51. 583-588. 2014.
[35]  Santos, R.R. Muruci, L.N.M., Santos, L.O., Antoniassi, R., Silva, J.P.L., Damaso, M.T.C. “Characterization of different oil soapstocks and their application in the lipase production by Aspergillus niger under Solid State”. J Food Nutr Res. 2. 9. 561-566. 2014.
[36]  Pokorny, D., Friedrich, J. and Cimerman, A. “Effect of nutritional factors on lipase biosynthesis by Aspergillus niger. Biotechnol Lett. 4. 363-366. 1994.
[37]  Ohnishi, K., Yoshida, Y. and Seriguchi, J. “Lipase production of Aspergillus oryzae”. J Ferment Bioeng. 77. 490-495. 1994.
[38]  Sun, S.Y. and Xu, Y. “Solid-state fermentation for ‘whole-cell synthetic lipase’ production from Rhizopus chinensis and identification of the functional enzyme”. Process Biochem. 43. 219-224. 2008.