Journal of Food and Nutrition Research
ISSN (Print): 2333-1119 ISSN (Online): 2333-1240 Website: http://www.sciepub.com/journal/jfnr Editor-in-chief: Prabhat Kumar Mandal
Open Access
Journal Browser
Go
Journal of Food and Nutrition Research. 2014, 2(8), 510-516
DOI: 10.12691/jfnr-2-8-13
Open AccessArticle

Effect of Oat Soluble and Insoluble β-glucan on Lipid Metabolism and Intestinal Lactobacillus in High-fat Diet-induced Obese Mice

Dong Ji-Lin1, Zhu Ying-ying1, Li Lin1, Shen Rui-ling1, and Li Hong1

1School of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, Henan, China

Pub. Date: August 15, 2014

Cite this paper:
Dong Ji-Lin, Zhu Ying-ying, Li Lin, Shen Rui-ling and Li Hong. Effect of Oat Soluble and Insoluble β-glucan on Lipid Metabolism and Intestinal Lactobacillus in High-fat Diet-induced Obese Mice. Journal of Food and Nutrition Research. 2014; 2(8):510-516. doi: 10.12691/jfnr-2-8-13

Abstract

In this study, high-fat diet-induced obese mice were administered oat soluble (SOG) and insoluble β-glucan (IOG) at different doses. Mice were sacrificed after 6 weeks, body weight, serum lipid level, fecal pH value, fecal bile acid excretion and total colonic short-chain fatty acid (SCFA) concentration was measured. Mesenteric adipocyte count and size were also evaluated histologically. The population of Lactobacillus in colon was determined. Compared with obese mice administered normal saline, body weight, serum cholesterol, triglycerides and the lipoprotein profile were significantly decreased (p<0.05) in mice administered SOG and IOG. The fecal pH value was significantly decreased (p<0.05), while both fecal bile acid excretion and total colonic SCFA concentration were significantly increased (p<0.05). In addition, it exhibited an increase of fat cell count and a decrease of cell size. SOG and IOG restored the number of Lactobacillus in colon (p<0.05). IOG was more effective on weight-loss while SOG might play a more important role in improving serum lipids and the efficacy of promoting growth of Lactobacillus is similar. A dosage of 2 g•kg-1•BW (Body Weight) produced the most significant effect. These data were anticipated to support the prebiotic property and anti-obesity effect of oat β-glucan.

Keywords:
oat β-glucan obesity serum lipids Lactobacillus short-chain fatty acid

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Malterud, K. and Tonstad, S. “Preventing obesity: Challenges and pitfalls for health promotion,” Patient Education and Counseling, 76 (2). 254-259. 2009.
 
[2]  Kimokoti, R. W. and Barbara, E. M. “Diet, the global obesity epidemic, and prevention,” Journal of the American Dietetic Association, 111 (8). 1137-1140. 2011.
 
[3]  Hu, F. B., Stampfer, M. J., Solomon, C., Liu, S., Colditz, G. A., Speizer, F. E. and Manson, J. E., “Physical activity and risk for cardiovascular events in diabetic women,” Annals of Internal Medicine, 134 (2). 96-105. 2001.
 
[4]  Logue, J., Murray, H. M., Welsh, P., Shepherd, J., Packard, C., Macfarlane, P. and Sattar, N., “Obesity is associated with fatal coronary heart disease independently of traditional risk factors and deprivation,” Heart, 97 (7). 564-568. 2011.
 
[5]  Galisteo, M., Duarte, J. and Zarzuelo, A., “Effects of dietary fibers on disturbances clustered in the metabolic syndrome,” The Journal of Nutritional Biochemistry, 19 (2). 71-84. 2008.
 
[6]  Karnik, R., “The value of lipid lowering in patients with coronary heart disease,” Journal of Clinical and Basic Cardiology, 4 (1). 31-34. 2001.
 
[7]  Tiangang, L., Michelle, M., Shannon, B., Bo, K., Lisa, M. N., Grace, G., Ewa, E. and John, Y. L. C., “Over expression of cholesterol 7α-hydroxylase promotes hepatic bile aid synthesis and secretion and maintains cholesterol homeostasis,” Hepatol, 53 (3). 996-1006. 2011.
 
[8]  Khalil, N. A., Walton, G. E., Gibson, G. R., Tuohy, K. M. and Andrews, S. C., “In vitro batch cultures of gut microbiota from healthy and ulcerative colitis (UC) subjects suggest that sulphate-reducing bacteria levels are raised in UC and by a protein-rich diet, ”International Journal of Food Sciences and Nutrition, 65 (1). 79-88. 2013.
 
[9]  Yang, J., Martínez, I., Walter, J., Keshavarzian, A. and Rose, D. J., “In vitro characterization of the impact of selected dietary fibers on fecal microbiota composition and short chain fatty acid production,” Anaerobe, 23. 74-81. October, 2013.
 
[10]  Kaushik, G., Satya, S., Khandelwal, R. K. and Naik, S. N., “Commonly consumed Indian plant food materials in the management of diabetes mellitus,” Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 4 (1). 21-40. 2010.
 
[11]  Martins, F., Noso, T. M., Porto, V. B., Curiel, A., Gambero, A., Bastos, D. H. and Carvalho, P. D. O., “Maté tea inhibits in vitro pancreatic lipase activity and has hypolipidemic effect on high-fat die-induced obese mice,” Obesity, 18 (1): 42-47. 2010.
 
[12]  Ruiz-Roso, B., Quintela, J. C., de la Fuente, E., Haya, J. and Pérez-Olleros L., “Insoluble carob fiber rich in polyphenols lowers total and LDL cholesterol in hypercholesterolemic sujects, ”Plant Foods for Human Nutrition, 65 (1): 50-56. 2010.
 
[13]  Grover, G. J., Koetzner, L., Wicks, J., Gahler, R. J., Lyon, M. R., Reimer, R. A. and Wood, S., “Effects of the soluble fiber complex PolyGlycopleX®(PGX®) on glycemic control, insulin secretion, and GLP-1 levels in Zucker diabetic rats,” Life Sciences, 88 (9): 392-399. 2011.
 
[14]  Beck, E. J., Tosh, S. M., Batterham, M. J., Tapsell, L. C. and Huang, X. F., “Oat β-glucan increases postprandial cholecystokinin levels, decreases insulin response and extends subjective satiety in overweight subjects, ”Molecular Nutrition & Food Research, 53 (10): 1343-1351. 2009.
 
[15]  Queenan, K. M., Stewart, M. L., Smith, K. N., Thomas, W., Fulcher, R. G. and Slavin, J. L., “Concentrated oat β-glucan, a fermentable fiber, lowers serum cholesterol in hypercholesterolemic adults in a randomized controlled trial,” Nutrition Journal, 6 (1): 6. 2007.
 
[16]  Shen, R. L., Dang, X. Y., Dong, J. L. and Hu, X. Z., “Effects of oat β-glucan and barley β-glucan on fecal characteristics, intestinal microflora, and intestinal bacterial metabolites in rats,” Journal of Agricultural and Food Chemistry, 60 (45): 11301-11308. 2012.
 
[17]  Hughes, S. A., Shewry, P. R., Gibson, G. R., McCleary, B. V. and Rastall, R. A., “In vitro fermentation of oat and barley derived β-glucans by human faecal microbiota,” FEMS Microbiology ecology, 64 (3): 482-493. 2008.
 
[18]  Xie, N., Cui, Y., Yin, Y. N., Zhao, X., Yang, J. W., Wang, Z. G., Fu, N., Tang, Y., Wang, X. H., Liu, X. H., Wang, C. L. and Lu, F. G., “Effects of two Lactobacillus strains on lipid metabolism and intestinal microflora in rats fed a high-cholesterol diet,” BMC Complementary and Alternative Medicine, 11 (1): 53. 2011.
 
[19]  Johansson, L., Virkki, L., Maunu, S., Lehto, M., Ekholm, P. and Varo, P., “Structural characterization of water soluble β-glucan of oat bran,” Carbohydrate Polymers, 42 (2): 143-148. 2000.
 
[20]  Porter, J. L., Fordtran, J. S., Santa Ana, C. A., Emmett, M., Hagey, L. R., MacDonald, E. A. and Hofmann, A. F., “Accurate enzymatic measurement of fecal bile acids in patients with malabsorption, ”Journal of Laboratory and Clinical Medicine, 141 (6): 411-418. 2003.
 
[21]  Jie, Z., Bang-Yao, L., Ming-Jie, X., Hai-Wei, L., Zu-Kang, Z., Ting-Song, W. and Craig, S. A., “Studies on the effects of polydextrose intake on physiologic functions in Chinese people,” The American journal of clinical nutrition, 72 (6): 1503-1509. 2000.
 
[22]  Sourla, A., Flamand, M., Bélanger, A. and Labrie, F., “Effect of dehydroepiandrosterone on vaginal and uterine histomorphology in the rat,” The Journal of Steroid Biochemistry and Molecular Biology, 66 (3): 137-149. 1998.
 
[23]  Slavin, J. L., “Dietary fiber and body weight,” Nutrition 21(3): 411-418. 2005.
 
[24]  Assmann, G., Schulte, H., Funke, H. and Von Eckardstein, A., “The emergence of triglycerides as a significant independent risk factor in coronary artery disease,” European Heart Journal, 19: M8-14. 1998.
 
[25]  Zhang, N., Huang, C. and Ou, S., “In vitro binding capacities of three dietary fibers and their mixture for four toxic elements, cholesterol, and bile acid,” Journal of hazardous materials, 186 (1): 236-239. 2011.
 
[26]  Lindström, C., Holst, O., Hellstrand, P., Öste, R. and Andersson, K. E., “Evaluation of commercial microbial hydrocolloids concerning their effects on plasma lipids and caecal formation of SCFA in mice,” Food Hydrocolloids, 28 (2): 367-372. 2012.
 
[27]  Laparra, J. M. and Sanz, Y., “Interactions of gut microbiota with functional food components and nutraceuticals, ”Pharmacological Research, 61 (3): 219-225. 2010.
 
[28]  Kootte, R. S., Vrieze, A., Holleman, F., Dallinga-Thie, G. M., Zoetendal, E. G., de Vos, W. M., Groen, J. B. L., Hoekstra, E. S. and Nieuwdorp, M., “The therapeutic potential of manipulating gut microbiota in obesity and type 2 diabetes mellitus,” Diabetes, Obesity and Metabolism, 14 (2): 112-120. 2012.
 
[29]  Madsen, K. L., Doyle, J. S., Jewell, L. D., Tavernini, M. M. and Fedorak, R. N., “Lactobacillus species prevents colitis in interleukin 10 gene-deficient mice,” Gastroenterology, 116 (5): 1107-1114. 1999.
 
[30]  Kale-Pradhan, P. B., Jassaly, H. K. and Wilhelm, S. M., “Role of Lactobacillus in the Prevention of Antibiotic-Associated Diarrhea: A Meta-analysis,” Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy, 30 (2): 119-126. 2010.