Journal of Food and Nutrition Research
ISSN (Print): 2333-1119 ISSN (Online): 2333-1240 Website: http://www.sciepub.com/journal/jfnr Editor-in-chief: Prabhat Kumar Mandal
Open Access
Journal Browser
Go
Journal of Food and Nutrition Research. 2014, 2(7), 425-428
DOI: 10.12691/jfnr-2-7-16
Open AccessArticle

Green Tea Polyphenol Epigallocatechin-3-O-Gallate Attenuates Lipopolysaccharide-induced Nitric Oxide Production in RAW264.7 Cells

Seung-Jae Lee1, Hyun Woo Kang2, Seung Yuan Lee1 and Sun Jin Hur1,

1Department of Animal Science and Technology, Chung-Ang University, Anseong, Korea

2Department of Korean Food & Culinary Arts, Youngsan University, Busan, Korea

Pub. Date: July 24, 2014

Cite this paper:
Seung-Jae Lee, Hyun Woo Kang, Seung Yuan Lee and Sun Jin Hur. Green Tea Polyphenol Epigallocatechin-3-O-Gallate Attenuates Lipopolysaccharide-induced Nitric Oxide Production in RAW264.7 Cells. Journal of Food and Nutrition Research. 2014; 2(7):425-428. doi: 10.12691/jfnr-2-7-16

Abstract

Epigallocatechin-3-O-gallate (EGCG), the major polyphenol found in green tea, has been shown to downregulate inflammatory responses in macrophages; however, the underlying mechanism has not been understood. Overproduction of nitric oxide (NO) by inducible nitric oxide synthase (iNOS) is known to be closely correlated with the pathology of a variety of diseases and inflammations. In this study, we investigated the inhibitory effect of EGCG on NO production and its molecular mechanism in lipopolysaccharide (LPS)-stimulated macrophage RAW264.7 cells. Besides a decrease in NO secretion, protein levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) also decreased in LPS-stimulated RAW264.7 macrophage cells treated with EGCG. These results suggest that EGCG possesses a potent anti-inflammatory activity.

Keywords:
Epigallocatechin-3-O-gallate Nitric oxide Inflammation RAW264.7 cells Lipopolysaccharide

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  MacMicking, J., Xie, Q.W., and Nathan, C., “Nitric oxide and macrophage function”, Annu Rev Immunol 15, 323-350. 1997.
 
[2]  Schoedon, G., Schneemann, M., Walter, R., Blau, N., Hofer, S., and Schaffner, A., “Nitric oxide and infection: another view” Clin Infect Dis 21(Suppl 2), S152-157. 1995.
 
[3]  Gomez-Flores, R., Weber, R.J., “Immunomodulation of macrophage functions by opioids” Adv Exp Med Biol 437, 13-19. 1998.
 
[4]  Forman, H.J., and Torres, M., “Redox signaling in macrophages” Mol Aspects Med 22 (4-5), 189-216. 2001.
 
[5]  Kim, S., and Ponka, P., “Nitric oxide-mediated modulation of iron regulatory proteins: implication for cellular iron homeostasis” Blood Cells Mol Diseases 29 (3), 400-410. 2002.
 
[6]  Yang, C.S., Wang, X., Lu, G., and Picinich, S.C., “Cancer prevention by tea: animal studies, molecular mechanisms and human relevance” Nat Rev Cancer 9 (6), 429-439. 2009.
 
[7]  Tsai, S.Y., Chang, Y., Chen, TL., and Chen, R.M., “Therapeutic concentrations of propofol protects mouse macrophages from nitric oxide-induced cell death and apoptosis” Can J Anaesth 49 (5), 477-480. 2002.
 
[8]  Hobbs, A.J., Higgs, A., and Moncada, S., “Inhibition of nitric oxide synthase as a potential therapeutic target” Annu Rev Pharmacol Toxicol 39, 191-220. 1999.
 
[9]  Marletta, M.A., “Nitric oxide synthase structure and mechanism” J Biol Chem 268 (17), 12231-12234. 1993.
 
[10]  Chung, H.T., Pae, H.O., Choi, B.M., Billiar, T.R., and Kim, Y.M., “Nitric oxide as a bioregulator of apoptosis, Biochem” Biophys Res Commun 282 (5), 1075-1079. 2001.
 
[11]  Xie, Q.W., Cho, H.J., Calaycay, J., Mumford, R.A., Swiderek, K.M., and Lee, T.D., “Cloning and characterization of inducible nitric oxide synthase from mouse macrophages” Science 256 (5054), 225-228. 1992.
 
[12]  Yang, C.S., Maliakal, P., and Meng, X., “Inhibition of carcinogenesis by tea” Annu Rev Pharmacol Toxicol 42, 25-54. 2002.
 
[13]  Lin, Y.L., and Lin, J.K., “(-)-Epigallocatechin-3-gallate blocks the induction of nitric oxide synthase by down-regulating lipopolysaccharide-induced activity of transcription factor nuclear factor-kappaB” Mol Pharmacol 52 (3), 465-472. 1997.
 
[14]  Bors, W., and Saran, M., “Radical scavenging by flavonoid antioxidants” Free Radic Res Commun 2 (4-6), 289-294. 1987.
 
[15]  Fujimura, Y., Tachibana, H., and Yamada, K., “A tea catechin suppresses the expression of the high-affinity IgE receptor Fc ε RI in human basophilic KU812 cells” J Agric Food Chem 49(5), 2527-2531. 2001.
 
[16]  Chow, H.H., Cai, Y., Hakim, I.A., Crowell, J.A., Shahi, F., Brooks, C.A., Dorr, R.T., Hara, Y., and Alberts, D.S., “Pharmacokinetics and safety of green tea polyphenols after multiple-dose administration of epigallocatechin gallate and polyphenon E in healthy individuals” Clin Cancer Res 9 (9), 3312-3319. 2003.
 
[17]  Wu, K.M., Ghantous, H., and Birnkrant, D.B., “Current regulatory toxicology perspectives on the development of herbal medicines to prescription drug products in United States” Food Chem Toxicol 46 (8), 2606-2610. 2008.
 
[18]  Lee, S.J., Kim, E.K., Kim, Y.S., Hwang, J.W., Lee, K.H., Choi, D.K., Kang, H., Moon, S.H., Jeon, B.T., and Park, P.J., “Purification and characterization of a nitric oxide inhibitory peptide from Ruditapes philippinarum” Food Chem Toxicol 50 (5), 1660-1666. 2012.
 
[19]  Ma, J.S., Kim, W.J., Kim, J.J., Kim, T.J., Ye, S.K., Song, M.D., Kang, H., Kim, D.W., Moon, W.K., and Lee, K.H., “Gold nanoparticles attenuate LPS-induced NO production through the inhibition of NF-jB and IFN-b/STAT1 pathways in RAW264.7 cells” Nitric Oxide 23 (3), 214-219. 2010.
 
[20]  Lee, S.J., Kim, Y.S., Hwang, J.W., Kim, E.K., Moon, S,H., Jeon, B.T., Jeon, Y.J., Kim, J.M., and Park, P.J., “Purification and characterization of a novel antioxidative peptide from duck skin by-products that protects liver against oxidative damage” Food Res Int 49 (1), 285-295. 2012.
 
[21]  Fiocchi, C., “Inflammatory bowel disease: Etiology and pathogenesis” Gastroenterology 115 (1), 182-205. 1998.
 
[22]  Moncada, S., “Nitric oxide: Discovery and impact on clinical medicine” J Roy Soc Med 92 (4), 164-169. 1999.
 
[23]  Turini, M.E., and DuBois, R.N., “Cyclooxygenase-2: A therapeutic target” Annu Rev Med 53, 35-57. 2002.
 
[24]  Pan, M.H., and Ho, C.T., “Chemopreventive effects of natural dietary compounds on cancer development” Chem Soc Rev 37 (11), 2558-2574. 2008.
 
[25]  Mann, J.R., Backlund, M.G., and DuBois, R.N., “Mechanisms of disease: Inflammatory mediators and cancer prevention” Nat Clin Pract Oncol 2 (4), 202-210. 2005.
 
[26]  Grelle, G., Otto, A., Lorenz, M., Frank, R.F., Wanker, E.E., and Bieschke, J., “Black tea theaflavins inhibit formation of toxic amyloid-beta and alpha-synuclein fibrils” Biochemistry 50 (49), 10624-10636. 2011.
 
[27]  Wolfram, S., “Effects of green tea and EGCG on cardiovascular and metabolic health” J Am Coll Nutr 26 (4), 373S-88S. 2007.
 
[28]  Ghosh, S., May, M.J., and Kopp, E.B., “NF-kappa B and Rel proteins: evolutionarily conserved mediators of immune responses” Annu Rev Immunol 16, 225-260. 1998.
 
[29]  Liu, R.H., and Hotchkiss, J.H., “Potential genotoxicity of chronically elevated nitric oxide: a review” Mutat Res 339 (2), 73-89. 1995.
 
[30]  Roghani, M., and Baluchnejadmojarad, T., “Chronic epigallocatechin-gallate improves aortic reactivity of diabetic rats: underlying mechanisms” Vascul Pharmacol 51 ( ), 84-9. 2009.
 
[31]  Yang, P., and Li, H., “Epigallocatechin-3-gallate ameliorates hyperglycemia-induced embryonic vasculopathy and malformation by inhibition of Foxo3a activation” Am J Obstet Gynecol 203 (75), 1-6. 2010.
 
[32]  Zhong, Y., Chiou, Y.S., Pan, M.H., and Shahidi, F., “Anti-inflammatory activity of lipophilic epigallocatechin gallate (EGCG) derivatives in LPS-stimulated murine macrophages” Food Chem 134 (), 742-748.