Journal of Food and Nutrition Research
ISSN (Print): 2333-1119 ISSN (Online): 2333-1240 Website: Editor-in-chief: Prabhat Kumar Mandal
Open Access
Journal Browser
Journal of Food and Nutrition Research. 2014, 2(7), 335-339
DOI: 10.12691/jfnr-2-7-1
Open AccessArticle

Lipid Changes and Effect of Diet Therapy only in Gestational Diabetes Mellitus and Normal Pregnancy in Developing Area Southern China

LingLing Huang1, Jun Xiong2, , Gowreesunkur Purvarshi1, SuMei Wang1, LinLin Zhong1 and Hui Tang1,

1Department of Obstetrics and Gynecology, the First Affiliated Hospital of GuangXi Medical University, Nanning, GuangXi, China

2Department of Obstetrics and Gynecology, the Second Affiliated Hospital of NanChang University Medical College, JiangXi, China

Pub. Date: June 22, 2014

Cite this paper:
LingLing Huang, Jun Xiong, Gowreesunkur Purvarshi, SuMei Wang, LinLin Zhong and Hui Tang. Lipid Changes and Effect of Diet Therapy only in Gestational Diabetes Mellitus and Normal Pregnancy in Developing Area Southern China. Journal of Food and Nutrition Research. 2014; 2(7):335-339. doi: 10.12691/jfnr-2-7-1


Objective: To explore the changes in the feature of serum lipid in different trimester of normal pregnancy and GDM, analysis of the effect of diet therapy on blood lipid level on GDM and the relationship between serum and lipid. Methods: 92 normal pregnant women and 85 GDM women were inclusive in this study. The maternal serum lipid levels, diet intake and newborn weight of both groups were recorded. After diet therapy, GDM group was further divided into two subgroups, one with blood glucose under control and one with poor glycemic control according to the blood glucose monitoring. Results: LDL-C and apoB were significantly increased in GDM group compared to normal group in the first trimester(P < 0.05); GDM patients consume more energy having higher weight gain/ pregravid BMI compared to normal group till gestational diabetes was confirmed (P <0.05). Compared to early trimester, TC,TG, LDL-C, LDL-C,apoA1 and apoB were increased in the normal group in late trimester(P <0.05); Compared to the control group in late phase, there was higher apoB, but lower TG in glucose control group. There were higher TC, TG and neonatal weight in the poor glycemic group compared to the control group in late phase (P < 0.05); There was a positive correlation between TC, TG and newbornweight (P < 0.05). Conclusion: With increasing gestational age, there is increasing level of blood lipid profile during pregnancy. Excessive nutrient intake and incidence of GDM may be related. Diet therapy can improve blood lipid status which may help control neonatal weight.

Gestational Diabetes Mellitus (GDM) lipid nutrition intake diet therapy neonatal weight

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


[1]  dos SIC, Rea RR, Fadel-Picheth CM, et al. The plasma logarithm of the triglyceride/HDL-cholesterol ratio is a predictor of low risk gestational diabetes in early pregnancy. Clin Chim Acta. 2013. 418: 1-4.
[2]  Rivero K, Portal VL, Vieira M, Behle I. Prevalence of the impaired glucose metabolism and its association with risk factors for coronary artery disease in women with gestational diabetes. Diabetes Res Clin Pract. 2008. 79(3): 433-7.
[3]  Sanchez-Vera I, Bonet B, Viana M, et al. Changes in plasma lipids and increased low-density lipoprotein susceptibility to oxidation in pregnancies complicated by gestational diabetes: consequences of obesity. Metabolism. 2007. 56(11): 1527-33.
[4]  Radaelli T, Lepercq J, Varastehpour A, Basu S, Catalano PM, Hauguel-De MS. Differential regulation of genes for fetoplacental lipid pathways in pregnancy with gestational and type 1 diabetes mellitus. Am J Obstet Gynecol. 2009. 201(2): 209.e1-209.e10.
[5]  Briana DD, Malamitsi-Puchner A. Reviews: adipocytokines in normal and complicated pregnancies. Reprod Sci. 2009. 16(10): 921-37.
[6]  Miehle K, Stepan H, Fasshauer M. Leptin, adiponectin and other adipokines in gestational diabetes mellitus and pre-eclampsia. Clin Endocrinol (Oxf). 2012. 76(1): 2-11.
[7]  Hu FB, van Dam RM, Liu S. Diet and risk of Type II diabetes: the role of types of fat and carbohydrate. Diabetologia. 2001. 44(7): 805-17.
[8]  Reece EA, Leguizamon G, Wiznitzer A. Gestational diabetes: the need for a common ground. Lancet. 2009. 373(9677): 1789-97.
[9]  Standards of medical care in diabetes--2011. Diabetes Care. 2011. 34 Suppl 1: S11-61.
[10]  Metzger BE, Gabbe SG, Persson B, et al. International association of diabetes and pregnancy study groups recommendations on the diagnosis and classification of hyperglycemia in pregnancy. Diabetes Care. 2010. 33(3): 676-82.
[11]  Block G, Hartman AM, Dresser CM, Carroll MD, Gannon J, Gardner L. A data-based approach to diet questionnaire design and testing. Am J Epidemiol. 1986. 124(3): 453-69.
[12]  Block G, Coyle LM, Hartman AM, Scoppa SM. Revision of dietary analysis software for the Health Habits and History Questionnaire. Am J Epidemiol. 1994. 139(12): 1190-6.
[13]  Cheng R, Ma L, Zhang Y. [Application of EpiData software in the epidemiological survey of oral health]. Hua Xi Kou Qiang Yi Xue Za Zhi. 2013. 31(5): 538-40.
[14]  McLean M, Chipps D, Cheung NW. Mother to child transmission of diabetes mellitus: does gestational diabetes program Type 2 diabetes in the next generation. Diabet Med. 2006. 23(11): 1213-5.
[15]  Bowers K, Tobias DK, Yeung E, Hu FB, Zhang C. A prospective study of prepregnancy dietary fat intake and risk of gestational diabetes. Am J Clin Nutr. 2012. 95(2): 446-53.
[16]  Yogev Y, Langer O, Xenakis EM, Rosenn B. The association between glucose challenge test, obesity and pregnancy outcome in 6390 non-diabetic women. J Matern Fetal Neonatal Med. 2005. 17(1): 29-34.
[17]  dos SIC, Rea RR, Fadel-Picheth CM, et al. The plasma logarithm of the triglyceride/HDL-cholesterol ratio is a predictor of low risk gestational diabetes in early pregnancy. Clin Chim Acta. 2013. 418: 1-4.
[18]  Di CG, Miccoli R, Volpe L, et al. Maternal triglyceride levels and newborn weight in pregnant women with normal glucose tolerance. Diabet Med. 2005. 22(1): 21-5.
[19]  Klop B, Elte JW, Cabezas MC. Dyslipidemia in obesity: mechanisms and potential targets. Nutrients. 2013. 5(4): 1218-40.
[20]  Lappas M, Yee K, Permezel M, Rice GE. Release and regulation of leptin, resistin and adiponectin from human placenta, fetal membranes, and maternal adipose tissue and skeletal muscle from normal and gestational diabetes mellitus-complicated pregnancies. J Endocrinol. 2005. 186(3): 457-65.
[21]  Carpenter MW. Gestational diabetes, pregnancy hypertension, and late vascular disease. Diabetes Care. 2007. 30 Suppl 2: S246-50.
[22]  Velazquez-Lopez L, Gonzalez-Figueroa E, Medina-Bravo P, et al. Low calorie and carbohydrate diet: to improve the cardiovascular risk indicators in overweight or obese adults with prediabetes. Endocrine. 2013. 43(3): 593-602.
[23]  Asemi Z, Tabassi Z, Samimi M, Fahiminejad T, Esmaillzadeh A. Favourable effects of the Dietary Approaches to Stop Hypertension diet on glucose tolerance and lipid profiles in gestational diabetes: a randomised clinical trial. Br J Nutr. 2013. 109(11): 2024-30.
[24]  Lee J, Cho HS, Kim DY, et al. Combined effects of exercise and soy isoflavone diet on paraoxonase, nitric oxide and aortic apoptosis in ovariectomized rats. Appetite. 2012. 58(2): 462-9.
[25]  Chandalia M, Garg A, Lutjohann D, von BK, Grundy SM, Brinkley LJ. Beneficial effects of high dietary fiber intake in patients with type 2 diabetes mellitus. N Engl J Med. 2000. 342(19): 1392-8.
[26]  Ghio A, Bertolotto A, Resi V, Volpe L, Di CG. Triglyceride metabolism in pregnancy. Adv Clin Chem. 2011. 55: 133-53.
[27]  Schaefer-Graf UM, Graf K, Kulbacka I, et al. Maternal lipids as strong determinants of fetal environment and growth in pregnancies with gestational diabetes mellitus. Diabetes Care. 2008. 31(9): 1858-63.