Journal of Food and Nutrition Research
ISSN (Print): 2333-1119 ISSN (Online): 2333-1240 Website: http://www.sciepub.com/journal/jfnr Editor-in-chief: Prabhat Kumar Mandal
Open Access
Journal Browser
Go
Journal of Food and Nutrition Research. 2014, 2(6), 321-329
DOI: 10.12691/jfnr-2-6-9
Open AccessArticle

Tartary Buckwheat Extracts Regulate Insulin Sensitivity through IKKβ/IR/IRS-1/Akt Pathway under Inflammation Condition in Mice

Hanying Tian1, Wenjun Zhao2, Xudan Guo3, Baolin Liu2 and Min Wang1,

1College of Food Science and Engineering, Northwest A & F University, YangLing, Shaanxi, China

2Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Longmian Road, Nanjing, China

3Chinese Cereals and Oils association, Baiwanzhuang Street, Xicheng District, Beijing, China

Pub. Date: June 18, 2014

Cite this paper:
Hanying Tian, Wenjun Zhao, Xudan Guo, Baolin Liu and Min Wang. Tartary Buckwheat Extracts Regulate Insulin Sensitivity through IKKβ/IR/IRS-1/Akt Pathway under Inflammation Condition in Mice. Journal of Food and Nutrition Research. 2014; 2(6):321-329. doi: 10.12691/jfnr-2-6-9

Abstract

Tartary buckwheat is rich in flavonoids which have positive effects on preventing chronic disease. But the mechanism of tartary buckwheat ameliorating chronic disease is still poorly understood. This study investigated the regulation of insulin action in skeletal muscle by tartary buckwheat extracts (TBE) under inflammation states in mice. In mice with insulin resistance, glucose intolerance and insulin intolerance was reversed and muscular and hepatic glycogen levels were significantly increased by oral administration of TBE. Furthermore, TBE inhibited inflammation-stimulated IKKβ activation and IRS-1 serine phosphorylation in skeletal muscle tissue, and effectively facilitated IRS-1 tyrosine and downstream molecule Akt phosphorylation, leading to an increase in insulin-mediated glucose uptake in skeletal muscle tissue. The results showed that TBE modulated positively the phosphorylation of IRS-1 function in inflammatory condition to regulation the insulin sensitivity.

Keywords:
tartary buckwheat extracts insulin inflammation mice signal pathway

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Zygmunt, K., Faubert, B., MacNeil, J., Tsiani, E. 2010. Naringenin, a citrus flavonoid, increases muscle cell glucose uptake via AMPK. Biochem Biophys Res. 398, 178-183.
 
[2]  Breen, D.M., Sanli, T., Giacca, A., Tsiani, E. 2008. Stimulation of muscle cell glucose uptake by resveratrol through sirtuins and AMPK. Biochem Biophys Res Commun. 374, 117-122.
 
[3]  Gual, P., Le Marchand-Brustel Y., Tanti, J.F. 2005. Positive and negative regulation of insulin signaling through IRS-1 phosphorylation. Biochimie. 87, 99-109.
 
[4]  Shoelson, S.E., Lee, J., Goldfine, A.B. 2006. Inflammation and insulin resistance. J Clin Invest. 116, 1793-1801.
 
[5]  Guo, X.D., Zhang, D.Y., Gao, X.J., Parry, J., Liu, K., Liu, B.L., Wang, M. 2013. Quercetin and quercetin-3-O-glucuronide are equally effective in ameliorating endothelial insulin resistance through inhibition of reactive oxygen species-associated inflammation. Mol Nutr Food Res. 57, 1037-1045.
 
[6]  Arkan, M.C., Hevener, A.L., Greten, F.R., Maeda, S., Li, Z.W., Long, J.M., Wynshaw-Boris, A., Poli, G., Olefsky, J., Karin, M. 2005. IKK-β links inflammation to obesity-induced insulin resistance. Nat Med. 11, 191-198.
 
[7]  Manthey, J.A., 2000. Biological properties of flavonoids pertaining to inflammation. Microcirculation. 7, S29-S34.
 
[8]  Gonzalez, R., Ballester, I., Lopez-Posadas, R., Suarez, M.D., Zarzuelo, A., Martinez-Augustin, O., Medina, F.S.D. 2011. Effects of flavonoids and other polyphenols on inflammation. Crit Rev Food Sci Nutr. 51, 331-362.
 
[9]  García-Lafuente, A., Guillamón, E., Villares, A., Rostagno, M.A., Martínez, J.A. 2009. Flavonoids as anti-inflammatory agents: implications in cancer and cardiovascular disease. Inflamm Res. 58, 537-552.
 
[10]  Guo, X.D., Ma, Y.J., Parry, J., Gao, J.M., Yu, L.L., Wang, M. 2011. Phenolics content and antioxidant activity of tartary buckwheat from different locations. Molecules. 16, 9850-9867.
 
[11]  Fabjan, N., Rode, J., Košir, I.J., Wang, Z., Zhang, Z., Kreft, I. 2003. Tartary buckwheat (Fagopyrum tataricum Gaertn.) as a source of dietary rutin and quercitrin. J Agric Food Chem. 51, 6452-6455.
 
[12]  Zielinski, H., Kozlowska, H. 2000. Antioxidant activity and total phenolics in selected cereal grains and their different morphological fractions. J Agric Food Chem. 48, 2008-2016.
 
[13]  Li, D., Xiao, G., Ding, X. 2000. Study on the free radical scavenging effects of tartary buckwheat flavone. Food Sci Technol. 6, 62-64.
 
[14]  Pinent, M., Castell, A., Baiges, I., Montagut, G., Arola, L., Ardevol, A. 2008. Bioactivity of flavonoids on insulin-secreting cells. Compr Rev Food Sci F. 7, 299-308.
 
[15]  Jiang, P., Burczynski, F., Campbell, C., Pierce, G., Austria, J.A., Briggs, C.J. 2007. Rutin and flavonoid contents in three buckwheat species Fagopyrum esculentum, F. tataricum, and F. homotropicum and their protective effects against lipid peroxidation. Food Res Int. 40, 356-364.
 
[16]  Lee, C.C., Hsu, W.H., Shen, S.R., Cheng, Y.H., Wu, S.C. 2012. Fagopyrum tataricum (buckwheat) improved high-glucose-induced insulin resistance in mouse hepatocytes and diabetes in fructose-rich diet-induced mice. Exp Diabetes Res. 2012, 1-10.
 
[17]  Gong, F.Y., Li, F.L., Zhang, W.M., Li, J., Zhang, Z. 2012. Effects of crude flavonoids from tatary buckwheat on alloxan-induced oxidative stress in mice. Bangl J Pharmacol. 7, 124-130.
 
[18]  Lee, C.C., Shen, S.R., Lai, Y.J., Wu, S.C. 2013. Rutin and quercetin, bioactive compounds from tartary buckwheat, prevent liver inflammatory injury. Food Funct. 4, 794-802.
 
[19]  Liu, K., Luo, T.J., Zhang, Z.A., Wang, T., Kou, J.P., Liu, B.L., Huang, F. 2011. Modified Si-Miao-San extract inhibits inflammatory response and modulates insulin sensitivity in hepatocytes through an IKK β/IRS-1/Akt-dependent pathway. J Ethnopharmacol. 136, 473-479.
 
[20]  Kim, F., Tysseling, K.A., Rice, J., Pham, M., Haji, L., Gallis, B.M., Baas, A.S., Paramsothy, P., Giachelli, C.M., Corson, M.A., Raines, E.W. 2005. Free fatty acid impairment of nitric oxide production in endothelial cells is mediated by IKKβ. Arterioscler Thromb Vasc Biol. 25, 989-994.
 
[21]  Zygmunt, K., Faubert, B., MacNeil, J., Tsiani, E. 2010. Naringenin, a citrus flavonoid, increases muscle cell glucose uptake via AMPK. Biochem Biophys Res Commun. 398(2), 178-183.
 
[22]  Breen, D.M., Sanli, T., Giacca, A., Tsiani, E. 2008. Stimulation of muscle cell glucose uptake by resveratrol through sirtuins and AMPK. Biochem Biophys Res Commun. 374, 117-122.
 
[23]  Cazarolli, L.H., Zanatta, L., Alberton, E.H., Reis, B.F., Maria, S., Folador, P., Damazio, R.G., Pizzolatti, M.G., Mena, B.S., Fatima, R. 2008. Flavonoids: Cellular and Molecular Mechanism of Action in Glucose Homeostasis. Mini Rev Med Chem. 8, 1032-1038.
 
[24]  Sharma, B., Viswanath, G., Salunke, R., Roy, P. 2008. Effects of flavonoid-rich extract from seeds of Eugenia jambolana (L.) on carbohydrate and lipid metabolism in diabetic mice. Food Chem. 110, 697-705.
 
[25]  Wang, M., Gao, X.J., Zhao, W.W., Zhao, W.J., Jiang, C., Huang, F., Kou, J.P., Liu, B.L., Liu, K. 2013. Opposite effects of genistein on the regulation of insulin-mediated glucose homeostasis in adipose tissue. Brit J Pharmaco. 170, 328-340.
 
[26]  Jorge, A.P., Horst, H., Sousa, E.D., Pizzolatti, M.G., Silva, F.R.M.B. 2004. Insulinomimetic effects of kaempferitrin on glycaemia and on 14C-glucose uptake in rat soleus muscle. Chem-Biol Interact. 149, 89-96.
 
[27]  Mulvihill, E.E., Assini, J.M., Lee, J.K., Allister, E.M., Sutherland, B.G., Koppes, J.B., Sawyez, C.G., Edwards, J.Y., Telford, D.E., Charbonneau, A., St-Pierre, P., Marette, A., Huff, M.W. 2011. Nobiletin attenuates VLDL overproduction, dyslipidemia, and atherosclerosis in mice with diet-induced insulin resistance. Diabetes. 60, 1446-1457.
 
[28]  Achrekar, S., Kaklij, G.S., Pote, M.S., Kelkar, S.M. 1991. Hypoglycemic activity of Eugenia jambolana and Ficus bengalensis: mechanism of action. In Vivo. 5, 143.
 
[29]  Sharma, S.B., Nasir, A., Prabhu, K.M., Murthy, P.S. 2006. Antihyperglycemic effect of the fruit-pulp of Eugenia jambolana in experimental diabetes mellitus. J Ethnopharmacol. 104, 367-373.
 
[30]  Beck-Nielsen, H., Vaag, A., Damsbo, P., Handberg, A., Nielsen, O.H., Henriksen, J.E., Thye-Rønn, P. 1992. Insulin resistance in skeletal muscles in patients with NIDDM. Diabetes Care. 15, 418-429.
 
[31]  Golden, S., Wals, P.A., Okakima, F. 1979. Glycogen synthesis by hepatocytes from diabetic rats. Biochem J. 182, 727-734.
 
[32]  Sharma, B., Balomajumder, C., Roy, P. 2008. Hypoglycemic and hypolipidemic effects of flavonoid rich extract from Eugenia jambolana seeds on streptozotocin induced diabetic rats. Food Chem Toxicol. 46, 2376-2383.
 
[33]  Wei, Y., Chen, K., Whaley-Connell, A.T., Stump, C.S., Ibdah, J.A., Sowers, J.R. 2008. Skeletal muscle insulin resistance: role of inflammatory cytokines and reactive oxygen species. Am J Physiol Regul Integr Comp Physiol. 294, 673-680.
 
[34]  Shoelson, S.E., Lee, J., Goldfine, A.B. 2006. Inflammation and insulin resistance. J Clin Invest. 116, 1793-1801.
 
[35]  Shoelson, S.E., Lee, J., Yuan, M. 2003. Inflammation and the IKKβ/IκB/NF-κB axis in obesity-and diet-induced insulin resistance. Int J Obesity. 27, S49-S52.
 
[36]  Shao, L., Liu, K., Huang, F., Guo, X.D., Wang, M., Liu, B.L. 2013. Opposite Effects of Quercetin, Luteolin, and Epigallocatechin Gallate on Insulin Sensitivity Under Normal and Inflammatory Conditions in Mice. Inflammation. 36, 1-14.
 
[37]  Schenk, S., Horowitz, J.F. 2007. Acute exercise increases triglyceride synthesis in skeletal muscle and prevents fatty acid–induced insulin resistance. J Clin Invest. 117(6), 1690-1698.
 
[38]  Taha, C., Klip, A. 1999. The insulin signaling pathway. J Membrane Biol. 169, 1-12.
 
[39]  Chang, L., Chiang, S.H., Saltiel, A.R. 2004. Insulin signaling and the regulation of glucose transport. Mol Med. 10, 65-71.
 
[40]  Krook, A., Wallberg-Henriksson, H., Zierath, J.R. 2004. Sending the signal: molecular mechanisms regulating glucose uptake. Med Sci Sports Exerc. 36, 1212-1217.
 
[41]  Kanzaki, M. 2006. Insulin receptor signals regulating GLUT4 translocation and actin dynamics. Endocr J. 53, 267-293.