Journal of Food and Nutrition Research
ISSN (Print): 2333-1119 ISSN (Online): 2333-1240 Website: Editor-in-chief: Prabhat Kumar Mandal
Open Access
Journal Browser
Journal of Food and Nutrition Research. 2014, 2(3), 127-129
DOI: 10.12691/jfnr-2-3-6
Open AccessArticle

Monitoring of Element Contents of Three Different Apple (Malus Spp.) Varieties in an Apple Tree

Richard Horsley1, Hakki Gökbel2, Mehmet Musa Özcan3, , Mustafa Harmankaya4 and Şenay Şimşek1

1Department of Plant Sciences, North Dakota State University, Fargo, ND

2Department of Physiology, Selçuk Faculty of Medicine, Selcuk University, Konya, Turkey

3Department of Food Engineering, Faculty of Agriculture, Selçuk University, Konya, Turkey

4Department of Soil Science, Faculty of Agriculture, Selcuk University, Konya, Turkey

Pub. Date: April 20, 2014

Cite this paper:
Richard Horsley, Hakki Gökbel, Mehmet Musa Özcan, Mustafa Harmankaya and Şenay Şimşek. Monitoring of Element Contents of Three Different Apple (Malus Spp.) Varieties in an Apple Tree. Journal of Food and Nutrition Research. 2014; 2(3):127-129. doi: 10.12691/jfnr-2-3-6


Elements of three different apples in an apple tree were determined by Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES). K contents of apples ranged from 8510 mg/kg (green apple) to 11942 mg/kg (yellow-red apple). While Mg contents of three different apples change between 505 mg/kg (wild apple) and 734 mg/kg (wild apple), P contents ranged from 683 mg/kg (green apple) to 1145 mg/kg (yellow-red apple). In addition, S contents of apple samples were found between 413 mg/kg (green apple) to 556 mg/kg (yellow-red apple). B contents of apples were found between 18.8 mg/kg (wild apple) to 21.0 mg/kg (green apple). As a result, Cu, Fe, Mn, Mo, Zn, Ca, K and Mg contents of wild apple were found higher than those of results of other samples.

an apple tree three variety mineral heavy metals ICP-AES

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


[1]  Nour, V.- Trandafir, I.- Ionica, M.E.: Compositional Characteristics of Fruits of several Apple (Malus domestica Borkh.) Cultivars. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 38, 2010, pp 228-233.
[2]  Harsan, E.- Sestras, R.- Somsai, P.- Barbos, A.- Sestras, A.: Research Regarding the Principal Chemical Component Loss in the Apple Fruit during Storage. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 34 (1), 2006, pp 106-114.
[3]  Campeanu, G.- Neata, G.- Darjanschi, G.: Chemical Composition of the Fruits of Several Apple Cultivars Growth as Biological Crop. Notulae Botanicae Horti Agrobotanici Cluj -Napoca 37 (2), 2009, pp 161-164.
[4]  Nachtigall, G.R.- Dechen, A.R.: Seasonality of nutrients in leaves and fruits of apple trees. Science Agriculture (Piracicaba, Braz.) 63 (5), 2006, pp 493-501.
[5]  Wojcik, P. P.: Nutrition and calcium fertilization of apple trees, p. 111-128. Production Practices and Quality Assessment of Food Crops, vol. 2, Plant Mineral Nutrition and Pesticide Management, Kluwer Academic Publishers, 2004.
[6]  Belitz, H. D.- Grosch, W.: Fruits. In Food Chemistry, 2nd ed.; Belitz, H. D., Grosch, W., Eds.; Springer-Verlag: Berlin, Germany, 1999, pp 764-781.
[7]  Wills, E. D.: Metal catalysts in the diet. In Oxidative Stress; Sies, H., Ed.; Academic Press: London, U.K., 1985, pp 206-208.
[8]  Tsuji, H.- Venditti, F. J.- Jr., Evans, J. C.- Larson, M. G.- Levy, D.: The association of levels of serum potassium and magnesium with ventricular premature complexes (the Framingham Heart Study). American Journal of Cardiology 74, 1994, pp 232-235.
[9]  Leon, J.- Kloner, R. A.: An experimental model examining the role of magnesium in the therapy of acutemyocardial infarction. American Journal of Cardiology 75, 1995, pp 1292-129.
[10]  Baxter, G. F.- Sumeray, M. S.- Walker, J. M.: (1996). Infarct size and magnesium: insights into LIMIT-2 and ISIS-4 from experimental studies. Lancet 348, 1996, pp 1424- 1426.
[11]  J.A. Juri, J.A.- Neir, A.- Quilondron, A.- Motomura, Y.- Palomo, I.: Antioxidant activity and total phenolics concentration in apple peel and flesh is determined by cultivar and agro climatic growing region in Chile. Journal of Food & Environment 7 (3&4), 2009, pp 513-517.
[12]  Saura-Calixto, F. - Goni, I.: Antioxidant capacity of the Spanish Mediterranean diet. Food Chemistry 94, 2006, pp 442-447.
[13]  Smolin, L.- Grosvenor, M.: Nutrition: Science and application (3rd ed.).Orlando: Harcourt College Publishers, 2000.
[14]  Milton, K.: Micronutrient intakes of wild primates: are humans different? Comparative Biochemistry and Physiology part A 136, 2003, pp 47-59.
[15]  Kumari, M.- Gupta, S.- Lakshmi, A.- Prakash, J.: Iron bioavailability in gren leafy vegetables cooked in different utensils. Food Chemistry 86, 2004, pp 217-222.
[16]  Skujins S.: Handbook for ICP-AES (Varıan-Vista). A hort Guide To Vista Series ICP-AES Operation. Varian Int. G Zug. Version 1.0. pp 29, 1998, Switzerland.
[17]  Püskülcü, H.- Ikiz, F.: Introdiction to Statistic. Bilgehan Presss, p 333, Bornova, Izmir, Turkey, 1989. (in Turkish)
[18]  Henríquez, C.- Almonacid, S.- Chiffelle, I.- Valenzuela, T.- Araya, M.- Cabezas, L.- Simpson, R.- Speisky, H.: Determination of antioxidant capacity, total phenolic content and mineral composition of different fruit tissue of five apple cultivars grown in Chile. Chilean Journal of Agricultural Research 70, 2010, pp 523-536.
[19]  Manzoor, M.- Anwar, F., - Saari, N.- Ashraf, M.: ariations of Antioxidant Characteristics and Mineral Contents in Pulp and Peel of Different Apple (Malus domestica Borkh.) Cultivars from Pakistan. Molecules 17, 2012, pp 390-407.