Journal of Food and Nutrition Research
ISSN (Print): 2333-1119 ISSN (Online): 2333-1240 Website: Editor-in-chief: Prabhat Kumar Mandal
Open Access
Journal Browser
Journal of Food and Nutrition Research. 2022, 10(2), 105-110
DOI: 10.12691/jfnr-10-2-4
Open AccessArticle

Protective Effect of Rosmarinic Acid on Influenza Virus-induced Pneumonia in Mice

Xiuqiong Hu1, Qin Hua1, Lanjie Liu1 and Wei Yang1,

1Department of Nursing, Wenjiang District People's Hospital of Chengdu, Chengdu, Sichuan, 611130, China

Pub. Date: January 20, 2022

Cite this paper:
Xiuqiong Hu, Qin Hua, Lanjie Liu and Wei Yang. Protective Effect of Rosmarinic Acid on Influenza Virus-induced Pneumonia in Mice. Journal of Food and Nutrition Research. 2022; 10(2):105-110. doi: 10.12691/jfnr-10-2-4


Influenza virus induces pneumonia or flu in living body, and the progress is severely dependent on the host immune system, environmental factors and strain for infection. H1N1 Pneumonia progresses quickly in the living organism, leading to severe respiratory failure or refractory pneumonia, with greater mortality than bacterial pneumonia. Rosmarinic acid has known for its an anti-inflammatory and anti-viral effect. The current investigation was designed to scrutinize the protective effect of Rosmarinic acid on influenza virus-induced pneumonia in mice and explore the possible mechanism. The protective effect of Rosmarinic acid was assessed on influenza induced virus infection in mice. The survival rats, virus yield and mean survival time were also estimated. Pro-inflammatory cytokines such as interleukin-10 (IL-10), interferon-γ (INF-γ), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α) were scrutinized in the serum and lung tissue. NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3), adaptor apoptosis-associated speck-like protein containing a CARD (ASC) and Caspase-1 level also estimated. Rosmarinic acid considerably increased the survival rate, decreases the virus yields and prolongs survival., Rosmarinic acid significantly (P<0.001) up-regulated the INF-γ, IL-10 and down-regulated the level of IL-6 and TNF-α in the serum and lung tissue. Rosmarinic acid significantly reduced the expression of NLRP3, ASC and Caspase-1. Based on the obtained result, we can conclude that Rosmarinic acid exhibited a protective effect against the virus infection through inflammatory reaction.

Pneumonia Rosmarinic acid Inflammation Cytokines

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


Figure of 5


[1]  T. Narasaraju, E. Yang, R.P. Samy, H.H. Ng, W.P. Poh, A.A. Liew, M.C. Phoon, N. Van Rooijen, V.T. Chow, Excessive neutrophils and neutrophil extracellular traps contribute to acute lung injury of influenza pneumonitis, Am. J. Pathol. (2011).
[2]  S. Herold, M. Steinmueller, W. Von Wulffen, L. Cakarova, R. Pinto, S. Pleschka, M. Mack, W.A. Kuziel, N. Corazza, T. Brunner, W. Seeger, J. Lohmeyer, Lung epithelial apoptosis in influenza virus pneumonia: The role of macrophage-expressed TNF-related apoptosis-inducing ligand, J. Exp. Med. (2008).
[3]  E. Bautista, T. Chotpitayasunondh, Z. Gao, S.A. Harper, M. Shaw, T.M. Uyeki, S.R. Zaki, F.G. Hayden, D.S. Hui, J.D. Kettner, A. Kumar, M. Lim, N. Shindo, C. Penn, K.G. Nicholson, Clinical aspects of pandemic 2009 influenza a (H1N1) virus infection, N. Engl. J. Med. (2010).
[4]  J.H.C.M. Kreijtz, R.A.M. Fouchier, G.F. Rimmelzwaan, Immune responses to influenza virus infection, Virus Res. (2011).
[5]  J.S. Rossman, R.A. Lamb, Influenza virus assembly and budding, Virology. (2011).
[6]  T. Jefferson, M.A. Jones, P. Doshi, C.B. Del Mar, R. Hama, M.J. Thompson, E.A. Spencer, I.J. Onakpoya, K.R. Mahtani, D. Nunan, J. Howick, C.J. Heneghan, Neuraminidase inhibitors for preventing and treating influenza in adults and children, Cochrane Database Syst. Rev. (2014).
[7]  L. V. Gubareva, L. Kaiser, F.G. Hayden, Influenza virus neuraminidase inhibitors, Lancet. (2000).
[8]  K. Thorlund, T. Awad, G. Boivin, L. Thabane, Systematic review of influenza resistance to the neuraminidase inhibitors, BMC Infect. Dis. (2011).
[9]  X. Wang, W. Jia, A. Zhao, X. Wang, Anti-influenza agents from plants and traditional Chinese medicine, Phyther. Res. (2006).
[10]  M. Rajbhandari, R. Mentel, P.K. Jha, R.P. Chaudhary, S. Bhattarai, M.B. Gewali, N. Karmacharya, M. Hipper, U. Lindequist, Antiviral Activity of Some Plants Used in Nepalese Traditional Medicine, Evidence-Based Complement. Altern. Med. (2009).
[11]  S. Wu, J. Huang, Resveratrol alleviates staphylococcus aureus pneumonia by inhibition of the NLRP3 inflammasome, Exp. Ther. Med. (2017).
[12]  K.M. Robinson, K. Ramanan, M.E. Clay, K.J. McHugh, M.J. Pilewski, K.L. Nickolich, C. Corey, S. Shiva, J. Wang, R. Muzumdar, J.F. Alcorn, The inflammasome potentiates influenza/Staphylococcus aureus superinfection in mice, JCI Insight. (2018).
[13]  K. Kitur, D. Parker, P. Nieto, D.S. Ahn, T.S. Cohen, S. Chung, S. Wachtel, S. Bueno, A. Prince, Toxin-Induced Necroptosis Is a Major Mechanism of Staphylococcus aureus Lung Damage, PLoS Pathog. (2015).
[14]  M. Petersen, M.S.J. Simmonds, Rosmarinic acid, Phytochemistry. (2003).
[15]  M. Petersen, Rosmarinic acid: New aspects, Phytochem. Rev. (2013).
[16]  J. Rocha, M. Eduardo-Figueira, A. Barateiro, A. Fernandes, D. Brites, R. Bronze, C.M. Duarte, A.T. Serra, R. Pinto, M. Freitas, E. Fernandes, B. Silva-Lima, H. Mota-Filipe, B. Sepodes, Anti-inflammatory effect of rosmarinic acid and an extract of rosmarinus officinalis in rat models of local and systemic inflammation, Basic Clin. Pharmacol. Toxicol. 116 (2015) 398-413.
[17]  K. Sevgi, B. Tepe, C. Sarikurkcu, Antioxidant and DNA damage protection potentials of selected phenolic acids, Food Chem. Toxicol. (2015).
[18]  C. Sanbongi, H. Takano, N. Osakabe, N. Sasa, M. Natsume, R. Yanagisawa, K.I. Inoue, Y. Kato, T. Osawa, T. Yoshikawa, Rosmarinic acid inhibits lung injury induced by diesel exhaust particles, Free Radic. Biol. Med. (2003).
[19]  F.H. Bing, J. Liu, Z. Li, G. Bin Zhang, Y.F. Liao, J. Li, C.Y. Dong, Anti-influenza-virus activity of total alkaloids from Commelina communis L., Arch. Virol. (2009).
[20]  G. Bin Zhang, L.Q. Tian, Y.M. Li, Y.F. Liao, J. Li, F.H. Bing, Protective effect of homonojirimycin from Commelina communis (dayflower) on influenza virus infection in mice, Phytomedicine. (2013).
[21]  Y.H. Jang, J.Y. Kim, Y.H. Byun, A. Son, J.Y. Lee, Y.J. Lee, J. Chang, B.L. Seong, Pan-influenza a protection by prime-boost vaccination with cold-adapted live-attenuated influenza vaccine in a mouse model, Front. Immunol. (2018).
[22]  M. Michaelis, H.W. Doerr, J. Cinatl, An influenza A H1N1 virus revival - Pandemic H1N1/09 virus, Infection. (2009).
[23]  D.J. Jamieson, M.A. Honein, S.A. Rasmussen, J.L. Williams, D.L. Swerdlow, M.S. Biggerstaff, S. Lindstrom, J.K. Louie, C.M. Christ, S.R. Bohm, V.P. Fonseca, K.A. Ritger, D.J. Kuhles, P. Eggers, H. Bruce, H.A. Davidson, E. Lutterloh, M.L. Harris, C. Burke, N. Cocoros, L. Finelli, K.F. MacFarlane, B. Shu, S.J. Olsen, G. Chavez, K. Harriman, K. Winter, D. Aragon, N. Comstock, S. Cosgrove, J. Kenfield, J. Sadlowski, K. Arnold, C.L. Drenzek, P. Quinlisk, D. Von Stein, T. Sugg, D. Heisey-Grove, S. Soliva, S. Lett, R. Sharangpani, S. Vagasky, E. V. Wells, K. Noyes, M. Anand, J. Rice, J. Hunter, C. McDonald, L. Burnsed, C. McDonald, L. Burnsed, K. Waller, P. Mersereau, G. Goldbaum, M. Davis, B. Smith, J. Walker, R. Wing, A. Marfin, M. Nelson, N. Barnes, E.J. Barzilay, L. Berman, M.D. Brantley, C. Bridges, N. Dharan, S. Emery, A. Fiore, D. Gross, J. Kendrick, A. Klimov, M. Menon, C.E. O’Reilly, M. Patel, T. Uyeki, J. Villanueva, K.H. Wu, H1N1 2009 influenza virus infection during pregnancy in the USA, Lancet. (2009).
[24]  M.J. Tuvim, S.E. Evans, C.G. Clement, B.F. Dickey, B.E. Gilbert, Augmented lung inflammation protects against influenza A pneumonia, PLoS One. (2009).
[25]  I. Julkunen, K. Melén, M. Nyqvist, J. Pirhonen, T. Sareneva, S. Matikainen, Inflammatory responses in influenza A virus infection, Vaccine. (2000).
[26]  X. Chen, S. Liu, M.U. Goraya, M. Maarouf, S. Huang, J.L. Chen, Host immune response to influenza A virus infection, Front. Immunol. (2018).
[27]  I. Julkunen, T. Sareneva, J. Pirhonen, T. Ronni, K. Melén, S. Matikainen, Molecular pathogenesis of influenza A virus infection and virus-induced regulation of cytokine gene expression, Cytokine Growth Factor Rev. (2001).
[28]  M. Mordstein, G. Kochs, L. Dumoutier, J.C. Renauld, S.R. Paludan, K. Klucher, P. Staeheli, Interferon-λ contributes to innate immunity of mice against influenza A virus but not against hepatotropic viruses, PLoS Pathog. (2008).
[29]  A. Iwasaki, P.S. Pillai, Innate immunity to influenza virus infection, Nat. Rev. Immunol. (2014).
[30]  K.K. McKinstry, T.M. Strutt, A. Buck, J.D. Curtis, J.P. Dibble, G. Huston, M. Tighe, H. Hamada, S. Sell, R.W. Dutton, S.L. Swain, IL-10 Deficiency Unleashes an Influenza-Specific Th17 Response and Enhances Survival against High-Dose Challenge, J. Immunol. (2009).
[31]  R. Salomon, E. Hoffmann, R.G. Webster, Inhibition of the cytokine response does not protect against lethal H5N1 influenza infection, Proc. Natl. Acad. Sci. U. S. A. (2007).
[32]  N.S. Heaton, R.A. Langlois, D. Sachs, J.K. Lim, P. Palese, B.R. tenOever, Long-term survival of influenza virus infected club cells drives immunopathology, J. Exp. Med. (2014).
[33]  J. Wang, M.P. Nikrad, E.A. Travanty, B. Zhou, T. Phang, B. Gao, T. Alford, Y. Ito, P. Nahreini, K. Hartshorn, D. Wentworth, C.A. Dinarello, R.J. Mason, Innate immune response of human alveolar macrophages during influenza a infection, PLoS One. (2012).
[34]  S. Davidson, S. Crotta, T.M. McCabe, A. Wack, Pathogenic potential of interferon αβ in acute influenza infection, Nat. Commun. (2014).
[35]  K. Van Reeth, Cytokines in the pathogenesis of influenza, in: Vet. Microbiol., 2000.