Journal of Food and Nutrition Research
ISSN (Print): 2333-1119 ISSN (Online): 2333-1240 Website: Editor-in-chief: Prabhat Kumar Mandal
Open Access
Journal Browser
Journal of Food and Nutrition Research. 2020, 8(8), 431-440
DOI: 10.12691/jfnr-8-8-7
Open AccessMini Review

Nutritional Composition and Bioactive Compounds of Red Seaweed: A Mini-Review

Giulianna Gamero-Vega1, María Palacios-Palacios2 and Vilma Quitral1, 3,

1Instituto de Investigación, Universidad Católica de Los Ángeles de Chimbote, Chimbote. Perú.

2Escuela Profesional de Farmacia y Bioquímica, Facultad de Ciencias de la Salud, Universidad Católica de Los Ángeles de Chimbote, Chimbote, Perú

3Escuela de Nutrición y Dietética, Facultad de Salud, Universidad Santo Tomás, Santiago, Chile

Pub. Date: August 26, 2020

Cite this paper:
Giulianna Gamero-Vega, María Palacios-Palacios and Vilma Quitral. Nutritional Composition and Bioactive Compounds of Red Seaweed: A Mini-Review. Journal of Food and Nutrition Research. 2020; 8(8):431-440. doi: 10.12691/jfnr-8-8-7


This review describes the nutritional composition and polyphenol content of red algae. The nutrient composition of red algae is highly varied between different genera. Red algae are low-calorie foods, given their high concentration of protein and dietary fiber. They also have higher protein content than brown and green algae, with average values as high as 18.8 g/100 g. The digestibility of red algae proteins is moderate, however, due to their high level of dietary fiber and polyphenols. They have low fat content, but the quality of their fatty acids is very high. They contain essential fatty acids, also oleic acid, arachidonic acid, EPA, and DHA, which are considered beneficial to health. The omega-6/omega-3 ratio is very low (median = 0.8) which is very beneficial for human health. Red algae also have very high amounts of dietary fiber-higher than in terrestrial vegetables-and are especially rich in soluble fiber. It also contains minerals, in high concentrations; among those sodium and iodine stand out. Their sodium/potassium ratio is low, so consumption of red algae would not imply risk for people with hypertension or cardiovascular diseases. The polyphenol content in red algae is very high, but is lower than brown algae.

seaweeds algae rhodophyta red algae porphyra

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


[1]  Holdt, S.L., Kraan, S. “Bioactive compounds in seaweed: functional food applications and legislation”. Journal of Applied Phycology. 23(3). 543-97. February 2011
[2]  Taskin E, Kurt O. “Antibacterial activities of some marine algae from the Aegean Sea (Turkey)”. African Journal of Biotechnology. 6 (24). 2746-51. December 2007.
[3]  Cox S, Abu-Ghannam N, Gupta S. “An assessment of the antioxidant and antimicrobial activity of six species of edible Irish seaweeds”. International Food Research Journal. 17. 205-20. 2010.
[4]  Kim SK, Pangestuti R. "Potential role of marine algae on female health, beauty, and longevity". Advances in Food and Nutrition Research. 64. 41-51.2011
[5]  Rajapakse N, Kim S. K. "Nutritional and digestive health benefits of seaweed". Advances in Food and Nutrition Research. 64. 17-28. 2011.
[6]  Charoensiddhi S, Conlon MA, Franco CM, Zhang W. "The development of seaweed-derived bioactive compounds for use as prebiotics and nutraceuticals using enzyme technologies". Trends in Food Science and Technology. 70. 20-33. October 2017.
[7]  Khotimchenko SV, Vaskovsky VE, Titlyanova T. "Fatty acids of marine algae from the pacific coast of North California". Botanica Marina. 45(1). 17-22. 2002.
[8]  Agregán R, Munekata PE, Domínguez R, Carballo J, Franco D, Lorenzo JM. "Proximate composition, phenolic content and in vitro antioxidant activity of aqueous extracts of the seaweeds Ascophyllum nodosum, Bifurcaria bifurcata and Fucus vesiculosus". Food Research International. 99: 986-94. 2017.
[9]  Gupta S, Abu-Ghannam N. "Bioactive potential and possible health effects of edible brown seaweeds". Trends Food Sci Technol. 22(6). 315-26. 2011.
[10]  Noriega Cardó C. "Algas marinas para la alimentación de los peruanos". Turismo y Patrimonio. 9556 (10). 55-68. 2017.
[11]  Brown EM, Allsopp PJ, Magee PJ, Gill CI, Nitecki S, Strain CR, Mcsorley EM. "Seaweed and human health". Nutr Rev. 72(3). 205-16. 2014.
[12]  Cao J, Wang J, Wang S, Xu X."Porphyra species: a mini-review of Its pharmacological and nutritional properties". J Med Food. 19(2). 111-19. 2016.
[13]  Arvinda Swamy ML. "Marine algal sources for treating bacterial diseases". Adv Food Nutr Res. 64: 71-84. 2011.
[14]  Suvega T, Arunkumar K. "Probiotic bacteria promote the growth of associating host (red seaweed, Gracilaria edulis) also synthesize antibacterial protein". Biocatal Agric Biotechnol. 19. 101136. April 2019.
[15]  Usov AI. "Sulfated polysaccharides of the red seaweeds". Topics in Catalysis. 6(1): 9-23.1992
[16]  Yu S, Blennow A, Bojko M, Madsen F, Olsen CE, Engelsen SB. "Physico-chemical characterization of floridean starch of red algae". Staerke. 54(2). 66-74. 2002.
[17]  Barrientos E, Otaíza R. "Juveniles produced from unattached spores of Chondracanthus chamissoi (Rhodophyta, Gigatinales) can become attached to substratum". Rev Biol Mar Oceanog. 49(1). 135-40. 2014.
[18]  Kasimala MB, Mebrahtu L, Magoha P."Food, M. and Program T. A review on biochemical bomposition and nutritional aspects of seaweeds". Caribb J Sci. 3. 789-97. 2015.
[19]  Rapsomanikis A, Sygkridou D, Voutsinas E, Stathatos E. "Transparent quasi-solid state dye-sensitized solar cells sensitized with naturally derived pigment extracted from red seaweed". Curr. Appl. Phys. 16(6). 651-57. 2016.
[20]  Torres MM, Flórez-Fernández N, Domínguez H. "Impact of counterions on the thermo-rheological features of hybrid carrageenan systems isolated from red seaweed Gigartina skottsbergii". Food Hydrocoll. 84. 321-29. 2018.
[21]  Hagen Rødde RS, Vårum KM, Larsen BA, Myklestad S. M.. "Seasonal and geographical variation in the chemical composition of the red alga Palmaria palmata (L.) Kuntze". Botanica Marina. 47 (2). 125-33. 2004.
[22]  Ministry of Health of Peru. "Tablas Peruanas de composición de alimentos". Lima: MINSA. 2009.
[23]  Fleurence J. "Seaweed proteins: biochemical, nutritional aspects and potential uses". Trends Food Sci Technol. 10(1): 25-28. 1999.
[24]  Courtois, A. "Floridoside extracted from the red alga Mastocarpus stellatus Is a potent activator of the classical complement pathway". Mar Drugs. 6(3). 407-17. 2008.
[25]  Fleurence J, Morançais M, Dumay J, Decottignies P, Turpin V, Munier M, Garcia-Bueno N, Jaouen P. "What are the prospects for using seaweed in human nutrition and for marine animals raised through aquaculture?". Trends Food Sci Technol. 27(1). 57-61. 2012.
[26]  Cian RE, Drago SR, De Medina FS, Martínez-Augustin O. "Proteins and carbohydrates from red seaweeds: evidence for beneficial effects on gut function and microbiota". Mar Drugs. 13(8). 5358-83. 2009.
[27]  Palasí JT. "Caracterización físico‐química y nutricional de algas en polvo empleadas como ingrediente alimentario". Valencia. Spain: Escola Tècnica Superior D´Enginyeria Agronòmica I Del Medi Natural, Universitat Politècnica De València. 2015.
[28]  Urbano MG, Goñi I."Bioavailability of nutrients in rats fed on edible seaweeds, Nori (Porphyra tenera) and Wakame (Undaria pinnatifida), as a source of dietary fibre". Food Chem. 76(3). 281-6. 2002
[29]  Polat S, Ozogul Y. "Seasonal proximate and fatty acid variations of some seaweeds from the northeastern Mediterranean coast". Oceanologia 55(2). 375-91. 2013.
[30]  Ismail MM, Osman MEH. "Seasonal fluctuation of photosynthetic pigments of most common red seaweeds species collected from Abu Qir, Alexandria, Egypt". RevBiol Mar Oceanog. 51(3). 515-25. 2016.
[31]  Astorga-España MS, Rodríguez-Galdón B, Rodríguez-Rodríguez EM, Díaz-Romero C. "Amino acid content in seaweeds from the Magellan Straits (Chile)". J Food Compos Anal. 53. 77-84. 2016
[32]  Belghit I, Rasinger JD, Heesch S, Biancarosa I, Liland N, Torstensen B, Waagbø R, Lock EJ, Bruckner CG. "In-depth metabolic profiling of marine macroalgae confirms strong biochemical differences between brown, red and green algae". Algal Res. 26. 240-49. 2017.
[33]  Kumar, C. S., Ganesan, P., Suresh, P. V. and Bhaskar, N. 2008. "Seaweeds as a source of nutritionally beneficial compounds-a review". Journal of Food Science and Technology 45(1). 1-13. 2008
[34]  Apaya, M. K., Chang, M. T. and Shyur, L. F. "Phytomedicine polypharmacology: cancer therapy through modulating the tumor microenvironment and oxylipin dynamics". Pharmacology and Therapeutics 162. 58-68. 2016.
[35]  Jang, H. and Park, K. 2019. "Omega-3 and omega-6 polyunsaturated fatty acids and metabolic syndrome: a systematic review and meta-analysis". Clinical Nutrition. 39(3). 765-773. 2019.
[36]  Rangel-Huerta, O. D. and Gil, A. 2018. "Omega 3 fatty acids in cardiovascular disease risk factors: An updated systematic review of randomised clinical trials". Clinical Nutrition. 37(1).72-77. 2017
[37]  Lee, W. K., Lim, Y. Y., Leow, A. T. C., Namasivayam, P., Ong Abdullah, J. and Ho, C. L. 2017. "Biosynthesis of agar in red seaweeds: a review". Carbohydrate Polymers.164.23-30. 2017.
[38]  Guérin-Deremaux, L., Pochat, M., Reifer, C., Wils, D., Cho, S. and Miller, L. E. "The soluble fiber NUTRIOSE induces a dose-dependent beneficial impact on satiety over time in humans". Nutrition Research. 31(9). 665-672. 2011.
[39]  Sánchez-Machado, D. I., López-Cervantes, J., López-Hernández, J. and Paseiro-Losada, P. "Fatty acids, total lipid, protein and ash contents of processed edible seaweeds". Food Chemistry. 85(3). 439-444. 2004.
[40]  Siddique, Y. H., Mujtaba, S. F., Jyoti, S. and Naz, F. "GC-MS analysis of Eucalyptus citriodora leaf extract and its role on the dietary supplementation in transgenic Drosophila model of Parkinson’s disease". Food and Chemical Toxicology. 55. 29-35. 2013.
[41]  Oliveira, L. S., Coelho, J. S., Siqueira, J. H., Santana, N. M. T., Pereira, T. S. S. and Molina, M. del C. B. "Sodium/potassium urinary ratio and consumption of processed condiments and ultraprocessed foods". Nutricion Hospitalaria. 36(1): 125-132. 2019.
[42]  Gil, A. “Tratado de nutrición. Vol. I. Bases fisiológicas y bioquímicas de la nutrición. Madrid: Editorial Médica Panamericana, S.A.2010.
[43]  Ruz, M. and Pérez, F. "Nutrición y Salud. 2nd ed. Santiago: Editorial Mediterráneo.2016
[44]  Saini, R. K. and Keum, Y. S. "Omega-3 and omega-6 polyunsaturated fatty acids: dietary sources, metabolism, and significance-a review". Life Sciences 203. 255-267. 2018
[45]  Edelmann, M., Aalto, S., Chamlagain, B., Kariluoto, S. and Piironen, V.. "Riboflavin, niacin, folate and vitamin B12 in commercial microalgae powders". Journal of Food Composition and Analysis 82. 103226. 2019.
[46]  Nunes, N., Ferraz, S., Valente, S., Barreto, M.C. and Pinheiro de Carvalho, M. A. A. “Biochemical composition, nutritional value, and antioxidante properties of seven seaweed species from the Madeira Archipielago”. Journal od Applied Phycology. 29(5). 2427-2437. 2017.
[47]  Jiménez-Escrig, A., Jiménez-Jiménez, I., Pulido, R. and Saura-Calixto, F. "Antioxidant activity of fresh and processed edible seaweeds". Journal of the Science of Food and Agriculture. 81(5). 530-534. 2001.
[48]  Chew, Y. L., Lim, Y. Y., Omar, M. and Khoo, K. S. "Antioxidant activity of three edible seaweeds from two areas in South East Asia LWT". Food Science and Technology. 41(6). 1067-1072. 2008.
[49]  Moure, A., Sineiro, J., Domínguez, H. and Parajó, J. C. "Functionality of oilseed protein products: a review". Food Research International. 39(9). 945-963. 2006.
[50]  Gómez-Ordóñez, E., Jiménez-Escrig, A. and Rupérez, P. "Dietary fibre and physicochemical properties of several edible seaweeds from the northwestern Spanish coast". Food Research International 43(9). 2289-2294. 2010.
[51]  Syad, A. N., Shunmugiah, K. P. and Kasi, P. D. "Seaweeds as nutritional supplements: Analysis of nutritional profile, physicochemical properties and proximate composition of G. Acerosa and S. Wightii". Biomedicine and Preventive Nutrition. 3(2). 139-144. 2013
[52]  Fernández-Segovia, I., Lerma-García, M. J., Fuentes, A. and Barat, J. M. 2018. "Characterization of Spanish powdered seaweeds: composition, antioxidant capacity and technological properties". Food Research Internationa.l 111. 212-219. 2018.
[53]  Granito, M., Guerra, M., Torres, A and Guinand, J. "Efecto del procesamiento sobre las propiedades funcionales de Vigna Sinensis". Interciencia. 29(1). 521-526. 2004.
[54]  Morales, C., Schwartz, M., Sepúlveda, M. and Quitral, V. "Composición química y propiedades tecnológicas de alga roja, Agarophyton chilensis (ex Gracilaria chilensis)". Revista de Ciencia y Tecnología. 31(1). 59-67. 2019
[55]  Mohy El Din. "Temporal variation in chemical composition of Ulva lactuca and Corallina mediterranea". Int. J. Environ. Sci. Technol. 16. 5783-5796. 2019.
[56]  Frikha, F, Kammoun, M, Hammami, N, Mchirgui, RA, Belbahri, L, Gargouri, Y, Miled, N, & Ben-Rebah, F." Composición química y algunas actividades biológicas de algas marinas recolectadas en Túnez". Ciencias marinas, 37(2), 113-124. 2011.
[57]  Matanjun, P., Mohamed, S., Mustapha, N.M. et al. "Nutrient content of tropical edible seaweeds, Eucheuma cottonii, Caulerpa lentillifera and Sargassum polycystum". J Appl Phycol. 21, 75-80. 2009.
[58]  Foster, G.G. and A.N. Hodgson. "Consumption and apparent dry matter digestibility of six intertidal macroalgae by Turbo sarmaticus (Mollusca: Vetigastropoda: Turbinidae). Aquaculture, 167: 211-227.1998.
[59]  Gressler, V., Yokoya, N. S., Fujii, M. T., Colepicolo, P., Filho, J. M., Torres, R. P., & Pinto, E. " Lipid, fatty acid, protein, amino acid and ash contents in four Brazilian red algae species". Food Chemistry, 120(2), 585-590. 2010.
[60]  Marinho-Soriano E, Fonseca PC, Carneiro MA, Moreira WS. "Seasonal variation in the chemical composition of two tropical seaweeds". Bioresour Technol. 97:2402-2406. 2006
[61]  Teng Chan P, Matanjun P, Yaisr SM, Tek Song T. Antioxidant and hypolipidaemic activity of red seaweed, Gracilaria changii. Journal of Applied Phycology.26(2). 2013.
[62]  Baghel, R. S., Kumari, P., Reddy, C. R. K., & Jha, B. "Growth, pigments, and biochemical composition of marine red alga Gracilaria crassa". Journal of Applied Phycology, 26(5), 2143-2150. 2014.
[63]  Debbarma J, Rao M, Narasimha Murthy L, Ravishankar CN. Nutritional profiling of the edible seaweeds Gracilaria edulis, Ulva lactuca and Sargassum sp.". Indian Journal of Fisheries. 63(3): 81-87. 2016.
[64]  Benjama, O., & Masniyom, P. "Biochemical composition and physicochemical properties of two red seaweeds (Gracilaria fisheri and G. tenuistipitata) from the Pattani Bay in Southern Thailand. Songklanakarin Journal of Science and Technology, 34(2), 223-230. 2012.
[65]  Rodrigues D, Freitas AC, Pereira L, Rocha-Santos T, Vasconcelos MW, Roriz M, Rodríguez-Alcalá LM, Gomes A, Duarte A. "Chemical composition of red, brown and green macroalgae from Buarcos bay in Central West Coast of Portugal". Food Chemistry 183. 197-207. 2015.
[66]  Wen, X., Peng, C., Zhou, H., Lin, Z., Lin, G., Chen, S., & Li, P." Nutritional composition and assessment of Gracilaria lemaneiformis Bory. Journal of Integrative Plant Biology, 48(9), 1047-1053. 2006
[67]  Tabarsa, M., Rezaei, M., Ramezanpour, Z., & Waaland, J. R. "Chemical compositions of the marine algae Gracilaria salicornia (Rhodophyta) and Ulva lactuca (Chlorophyta) as a potential food source". Journal of the Science of Food and Agriculture, 92(12), 2500-2506. 2012
[68]  Neto RT, Marçal C, Queirós AS, Abreu H, Silva A, Cardoso S. Screening of Ulva rigida, Gracilaria sp., Fucus vesiculosus and Saccharina latissima as Functional Ingredients". Int. J. Mol. Sci. 19(10), 2987. 2018.
[69]  Denis, C., Morançais, M., Li, M., Deniaud, E., Gaudin, P., Wielgosz-Collin, G., Fleurence, J. "Study of the chemical composition of edible red macroalgae Grateloupia turuturu from Brittany (France)". Food Chemistry, 119(3), 913-917. 2010.
[70]  Wong KH, Cheung P. "Nutritional evaluation of some subtropical red and green seaweeds. Part I: proximate composition, amino acid profiles and some physico-chemical properties". Food Chemistry 71. 475-482. 2000.
[71]  Momin Siddique MA. "Proximate chemical composition and amino acid profile of two red seaweeds (hypnea pannosa and hypnea musciformis) collected from St. Martin’s island, Bangladesh" Journal of Fisheries Sciences. 7(2):178-186. 2013.
[72]  Cian, R. E., Fajardo, M. A., Alaiz, M., Vioque, J., González, R. J., & Drago, S. R."Chemical composition, nutritional and antioxidant properties of the red edible seaweed Porphyra columbina". International Journal of Food Sciences and Nutrition, 65(3), 299-305. 2014.
[73]  Dawczynski, C., Schubert, R., & Jahreis, G. "Amino acids, fatty acids, and dietary fibre in edible seaweed products". Food Chemistry, 103(3), 891-899. 2007.
[74]  Cofrades, S., López-Lopez, I., Bravo, L., Ruiz-Capillas, C., Bastida, S., Larrea, M. T., & Jiménez-Colmenero, F. "Nutritional and antioxidant properties of different brown and red Spanish edible seaweeds". Food Science and Technology International, 16(5), 361-370. 2010.
[75]  Kavale, M.G., Kazi, M.A., Sreenadhan, N. et al. "Nutritional profiling of Pyropia acanthophora var. robusta (Bangiales, Rhodophyta) from Indian waters". J Appl Phycol. 29, 2013-2020. 2017.
[76]  Uribe, E., Vega-Gálvez, A., Heredia, V., Pastén, A., & Di Scala, K. "An edible red seaweed (Pyropia orbicularis): influence of vacuum drying on physicochemical composition, bioactive compounds, antioxidant capacity, and pigments". Journal of Applied Phycology, 30(1), 673-683. 2018
[77]  Sakthivel, R., & Pandima Devi, K. "Evaluation of physicochemical properties, proximate and nutritional composition of Gracilaria edulis collected from Palk Bay". Food Chemistry, 174, 68-74. 2015
[78]  Taboada, M. C., Millán, R., & Miguez, M. I. " Nutritional value of the marine algae wakame (Undaria pinnatifida) and nori (Porphyra purpurea) as food supplements". Journal of Applied Phycology, 25(5), 1271-1276. 2013
[79]  Schmid M, Kraft LGK, van der Loos LM, Kraft GT, Virtue P, Nichols PD, Hurd CL. "Southern Australian seaweeds: A promising resource for omega-3 fatty acids". Food Chem. 1; 265: 70-77. November 2018.
[80]  Gressler V, Toyota Fujii M, Paternostro Martins A, Pinto E. "Biochemical composition of two red seaweed species grown on the Brazilian coast". Journal of the Science of Food and Agriculture. 91(9):1687-92. 2011.
[81]  Guaratini T, Lopes NP, Marinho-Soriano E, Cepicolo P, Pinto E. "Antioxidant activity and chemical composition of the non polar fraction of Gracilaria domingensis (Kützing) Sonder ex Dickie and Gracilaria birdiae (Plastino & Oliveira)". Brazilian Journal of Pharmacognosy. 22(4):724-730. 2012.
[82]  Denis C, Morançais M, Li M, Fleurence J. "Study of the chemical composition of edible red macroalgae Grateloupia turuturu from Brittany (France)". Food Chemistry. 119(3):913-917. 2010
[83]  Lym Yong WT, Hoo Ting S, Soon Yong Y, Yee Thien V, Hie Wong S, Lie Chin W, Rodrigues KF, Anton A. "Optimization of culture conditions for the direct regeneration of Kappaphycus alvarezii (Rhodophyta, Solieriaceae)". J Appl Phycol. 26: 1597-1606. 2014.
[84]  Alencar DB, Diniz JC, Rocha SAS, et al. "Fatty acid composition from the marine red algae Pterocladiella capillacea (S. G. Gmelin) Santelices & Hommersand 1997 and Osmundaria obtusiloba (C. Agardh) R. E. Norris 1991 and its antioxidant activity". Anais da Academia Brasileira de Ciencias. 90(1): 449-459. March 2018.
[85]  Gutiérrez Cuesta R, González K, Valdés O, Hernández Y, Acosta Y. "Algas marinas como fuente de compuestos bioactivos en beneficio de la salud humana: un artículo de revisión". Revista de Ciencias Biológicas y de la Salud. XVIII (3): 20-27. 2016
[86]  Sanz-Pintos N, Pérez-Jiménez J, Buschmann A, Vergara-Salina JR, Pérez-Correa J, Saura-Calixto F. "Macromolecular Antioxidants and Dietary Fiber in Edible Seaweeds". Journal of Food Science. 82(2): 289-295. 2017.
[87]  Sabeena Farvin KH, Jacobsen C. "Phenolic compounds and antioxidant activities of selected species of seaweeds from Danish coast". Food Chemistry. 138. 1670-1681. 2013.
[88]  Souza B, Cerqueira M, Martins J, Quintas M, Ferreira A, Teixeira J, Vicente A. "Antioxidant Potential of Two Red Seaweeds from the Brazilian Coasts. J. Agric". Food Chem. 59, 5589-5594. 2011.
[89]  Wang T, Jónsdóttir R, Kristinsson H, Oli G, Hreggvidsson G, Jónsson JO, Thorkelsson G, Ólafsdóttir G. "Enzyme-enhanced extraction of antioxidant ingredients from red algae Palmaria palmata". LWT - Food Science and Technology. 43. 1387-1393. 2010.
[90]  Yuan Y, Walsh N. "Antioxidant and antiproliferative activities of extracts from a variety of edible seaweeds". Food and Chemical Toxicology. 44.144-1150. 2006.