Journal of Food and Nutrition Research
ISSN (Print): 2333-1119 ISSN (Online): 2333-1240 Website: Editor-in-chief: Prabhat Kumar Mandal
Open Access
Journal Browser
Journal of Food and Nutrition Research. 2020, 8(7), 362-377
DOI: 10.12691/jfnr-8-7-8
Open AccessReview Article

Endophytes of Terrestrial Plants: A Potential Source of Bioactive Secondary Metabolites

Nasiruddin1, 2, Guangying Chen1, 2, , Yu Zhangxin1, 2 and Ting Zhao1, 2

1Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou 571127, P. R. China

2Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571127, P. R. China

Pub. Date: August 04, 2020

Cite this paper:
Nasiruddin, Guangying Chen, Yu Zhangxin and Ting Zhao. Endophytes of Terrestrial Plants: A Potential Source of Bioactive Secondary Metabolites. Journal of Food and Nutrition Research. 2020; 8(7):362-377. doi: 10.12691/jfnr-8-7-8


Endophytes are plant inhabiting microorganisms that possess a big and untapped source of natural products with unique chemical structures and biological activities for pharmaceutical and agriculture industry. About, several hundred of endophytes are associated with plants. Metabolites isolated from endophytes with diverse structures belong to alkaloids, steroids, terpenoids, flavonoids, phenols, flavonoids and others. The discovery of an array of therapeutic products has diverted the scientist’s interest from plants to these microorganisms. Hundreds of natural compounds have been obtained and structurally classified while other new active metabolites are under investigation. This present review is an approach to summarize some chemical classes of bioactive compounds obtained from these microorganisms and paving the way for future work.

bioactivities endophytes natural products secondary metabolites

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


[1]  Wilson, D., Endophyte: The evolution of a term, and clarification of its use and definition. Oikos, 1995, 73(2), 274-276.
[2]  Nair, D. N. and Padmavathy, S., Impact of endophytic microorganisms, plants, environment and humans. Sci World J., 2014, Article ID 250693. 11 pages.
[3]  Bary, A. D., Morphology and physiology of fungi, lichens and myxomycetes. In. Hofmeister's Handbook of Physiological Botany. Leipzig, Germany, 1866, Vol. 2, pp. 1831-1888.
[4]  Yu, H., Zhang, L., Li, L., Zheng, C., Guo, L., Li, W., Sun, P. and Qin, L., Recent developments and future prospects of antimicrobial metabolites produced by endophytes. Microbiol Res., 2010, 165(6), 437-449.
[5]  Gunatilaka, A. A., Natural products from plant-associated microorganisms: distribution, structural diversity, bioactivity and implications of their occurrence. J. Nat. Prod., 2006, 69(3), 509-526.
[6]  Caroll, G., Fungal endophytes in stem and leaves: from latent pathogen to mutualistic symbiont. Ecology, 1988, 69(1), 2-9.
[7]  Clay, K. and Holah, J., Fungal endophyte symbiosis and plant diversity in successional fields. Science, 1999, 285(5434), 1742-1745.
[8]  Wang, J., Huang, Y., Fang, M., Zhang, Y., Zheng, Z., Zhao, Y. and Su, W., Brefeldin A, a cytotoxin produced by Paecilomyces sp. and Aspergillus clavatus isolated from Taxus mairei and Torreya grandis. FEMS Immunol. Med. Mic., 2002, 34(1), 51-57.
[9]  Shashank, A. T., Rakesh, K. K. L., Ramakrishna, D., Kiran, S., Kosturkova, G. and Ravishankar, A. G., Current understandings of endophytes: their relevance, importance and industrial potentials. IOSR J. Biotechnol. Biochem., 2017, 3(3), 43-59.
[10]  Gusman, J. and Vanhaelen, M., Endophytic fungi: an underexploited source of biologically active secondary metabolites. Recent Res. Dev. Phytochem., 2000, 4,187-206.
[11]  Tan, R. X. and Zou, W. X., Endophytes: a rich source of functional metabolites. Nat. Prod. Rep., 2001, 18, 448-459.
[12]  Godstime, O.C., Enwa, F.O., Augustina, J.O., Christopher, E.O., Mechanisms of antimicrobial actions of phytochemicals against enteric pathogens-A review. J. Pharm. Chem. Biol. Sci., 2014, 2(2), 77-85.
[13]  Schulz, B., Boyle, C., Draeger, S., Rommert, A. K. and Krohn, K., Endophytic fungi: a source of novel biologically active secondary metabolites. Mycol. Res., 2002, 106 (9), 996-1004.
[14]  Strobel, G. A., Rainforest endophytes and bioactive products. Crit. Rev. Biotechnol., 2002, 22(4), 315-333.
[15]  Strobel, G. A., Endophytes as source of bioactive products. Microbes Infect., 2003, 5(6), 535-544.
[16]  Strobel, G. A., Daisy, B. H., Castillo, U. and Harper, J., Natural products from endophytic microorganisms. J. Nat. Prod., 2004, 67(2), 257-268.
[17]  Berdy, J., Thoughts and facts about antibiotics: where we are now and where we are heading. J. Antibiot., 2012, 65(8), 385-395.
[18]  Hui, S., Yan, H., Qing, X., Renyuan, Y. and Yongqiang, T, Isolation, characterization and antimicrobial activity of endophytic bacteria from Polygonum cuspidatum. Afr. J. Microbiol. Res., 2013, 7(16), 1496-1504.
[19]  Golinska, P., Wypij, M., Agarkar, G., Rathod, D., Dahm, H. and Rai, M., Endophytic actinobacteria of medicinal plants: diversity and bioactivity. Antonie Van Leeuwenhoek, 2015, 108(2), 267-289.
[20]  Chaudhary, H. S., Shrivastava, B. S., Rawat, A. and Shrivastava, S., Diversity and versatility of actinomycetes and its role in antibiotic production. J. Appl. Pharm. Sci., 2013, 3(8), S83-S94.
[21]  Barka, E. A., Vatsa, P., Sanchez, L., Gaveau-Vaillant, N., Jacquard, C., Klenk, H. P., Clement, C., Ouhdouch, Y. and Wezel, G. P. V., Taxonomy, physiology, and natural products of Actinobacteria. Microbiol. Mol. Biol. R., 2015, 80(1), 1-43.
[22]  Gayathri, P. and Muralikrishnan, V., Isolation and characterization of endophytic actinomycetes from mangrove plants for antimicrobial activity. Int. J. Curr. Microbiol. Appl. Sci., 2013, 2(11), 78-89.
[23]  Singh, R. and Dubey, A. K., Endophytic actinomycetes as emerging source for therapeutic compounds. Indo Global J. Pharm. Sci., 2015, 5(2), 106-116.
[24]  Saar, D. E., Polans, N. O., Sorensen, P. D. and Duvall, M. R., Angiosperm DNA contamination by endophytic fungi: detection and methods of avoidance. Plant Mol. Biol. Rep., 2001, 19(3), 249−260.
[25]  Bode, H. B., Bethe, B., Hofs, R. and Zeeck, A., Big effects from small changes: possible way to explore Nature’s chemical diversity. ChemBioChem., 2002, 3(7), 619-627.
[26]  Sturz, A. V., Christie, B. R. and Nowak, J., Bacterial endophytes: potential role in developing sustainable systems of crop production. Cr. Rev. Plant Sci., 2000, 19(1), 1-30.
[27]  Arnold, A., Maynard, Z., Gilbert, G., Coley, P. and Kursar, T., Are tropical fungal endophytes hyperdiverse? Ecol. Lett., 2000, 3(4), 267-274.
[28]  Clay, K., Fungal endophytes of plants: biological and chemical diversity. Nat. Toxins, 1993, 1(3), 147-149.
[29]  Hata, K., Futai, K. and Tsuda, M., Seasonal and needle age-dependent changes of the endophytic mycobiota in Pinus thunbergii and Pinus densiflora needles. Can. J. Botany, 1998, 76(2), 245-250.
[30]  Leuchtmann, A., Petrini, O., Petrini, L. E. and Carroll, G. C., Isozyme polymorphism in six endophytic Phyllosticta species. Mycol. Res., 1992, 96(4), 287-294.
[31]  McCutcheon, T. L., Carroll, G. C. and Schwab, S., Genotypic diversity in populations of a fungal endophyte from Douglas fir. Mycologia, 1993, 85(2), 180-186.
[32]  Lappalainen, J. H. and Yli-Mattila, T., Genetic diversity in Finland of the birch endophyte Gnomonia setacea as determined by RAPD-PCR markers. Mycol. Res., 1999, 103(3), 328-332.
[33]  Reddy, P. V., Bergen, M. S., Patel, R. and White, J. F. An examination of molecular phylogeny and morphology of the grass endophyte Balansia claviceps and similar species. Mycologia, 1998, 90(1), 108-117.
[34]  Mathur, S.B. and Jorgensen, J., International rules for seed testing. Prof. Inst. Seed test. Assoc. ISTA Historical papers, 2002, 1, 1-34.
[35]  Neergaard, P. In: Seed Pathology; Scientific Publishers, India, 2011; Vol. 1, pp. 739-754.
[36]  Abdullah, S. K., AL-Saad, I. and Essa, R. A., Mycobiota and natural occurrence of sterigmatocysin in herbal drugs in Iraq. Basrah J. Sci. B., 2002, 20, 1-8.
[37]  Mitter, B., Petric, A., Shin, M. W., Chain, P. S. G., Hauberg-Lotte, L., Reinhold-Hurek, B., Nowak, J. and Sessitsch, A., Comparative genome analysis of Burkholderia phytofirmans PsJN reveals a wide spectrum of endophytic lifestyles based on interaction strategies with host plants. Front. Plant Sci., 2013, 4, 120.
[38]  Berg, G., Grube, M., Schloter, M. and Smalla, K., Unraveling the plant microbiome: looking back and future perspectives. Front. Microbiol., 2014, 5, 148.
[39]  Rehman, A., Sahi, S. T., Khan, M. A. and Mehboob, S., Fungi associated with bark, twigs and roots of declined shisham (dalbergia sissoo roxb.) Trees in Punjab Pakistan. Pak. J. Phytopathol., 2012, 24(2), 152-158.
[40]  Karunai, S. B. and Balagengatharathilagam, P., Isolation and screening of endophytic fungi from medicinal plants of virudhunagar district for antimicrobial activity. Int. J. Sci. Nature, 2014, 5(1), 147-155.
[41]  Subramanian, C. V., Hypomycetes an account of Indian species except Cercospora. Council of Agricultural Research, New Delhi, 1971, 180-189.
[42]  Barnett, H. L.; Hunter, B. B. Illustrated Genera of Imperfect Fungi, 3rd ed.; Burgers Company, Minneapolis, 1972.
[43]  Youngbae, S., Kim, S. and Park, C. W., A phylogenetic study of polygonum sect. tovara (polygonaceae) based on ITS sequences of nuclear ribosomal DNA. J. Plant Biol., 1997, 40(1), 47-52.
[44]  Chen, X. Y., Qi, Y. D., Wei, J. H., Zhang, Z., Wang, D. L., Feng, J. D. and Gan, B. C., Molecular identification of endophytic fungi from medicinal plant Huperzia serrata based on rDNA ITS analysis. World J. Microbiol. Biotechnol., 2010, 27(3), 495-503.
[45]  Hsiang, Y.H., Hertzberg, R., Hecht, S. and Liu, L.F., Camptothecin induces protein-linked DNA breaks via mammalian DNA topoisomerase I. J. Biol. Chem., 1985, 260, 14873-14878.
[46]  Pommier, Y., Topoisomerase I inhibitors: camptothecins and beyond. Nat. Rev. Cancer, 2006, 6, 789-802.
[47]  Shweta, S., Zuehlke, S., Ramesha, B.T., Priti, V., Kumar, P. M., Ravikanth, G., Spiteller, M., Vasudeva, R. and Shaanker, R. U., Endophytic fungal strains of Fusarium solani, from Apodytes dimidiata E. Mey. ex Arn (Icacinaceae) produce camptothecin, 10-hydroxycamptothecin and 9-methoxycamptothecin. Phytochemistry, 2010, 71, 117-122.
[48]  Fabio, A., Proença, B. and Edson, R. F., Four spiroquinazoline alkaloids from Eupenicillium sp. isolated as an endophyte fungus from the leaves of Murraya paniculata (Rutaceae). Biochem. Syst. Ecol., 2005, 33(3), 257-268.
[49]  Liu, J. Y., Song, Y. C., Zhang, Z., Wang, L., Guo, Z. J., Zou, W. X. and Tan, R. X., Aspergillus fumigatus CY018, an endophytic fungus in Cynodon dactylon as a versatile producer of new and bioactive metabolites. J. Biotechnol., 2004, 114(3), 279-287.
[50]  Shen, L., Ye, Y. H., Wang, X. T., Zhu, H. L., Xu, C., Song, Y. C., Li, H. and Tan, R. X., Structure and total synthesis of aspernigerin: a novel Cytotoxic endophyte metabolite. Chem-Eur. J., 2006, 12(16), 4393-4396.
[51]  Rukachaisirikul, V., Sommart, U., Phongpaichit, S., Sakayaroj, J. and Kirtikara, K., Metabolites from the endophytic fungus Phomopsis sp. PSU-D15. Phytochemistry, 2008, 69(3), 783-787.
[52]  Liu, X., Dong, M., Chen, X., Jiang, M., Lv, X. and Zhou, J., Antimicrobial activity of an endophytic Xylaria sp. YX-28 and identification of its antimicrobial compound 7-amino-4-methylcoumarin. Appl. Microbiol. Biot., 2007, 78(2), 241-247.
[53]  Li, D. L., Li, X. M., Proksch, P. and Wang, B. G., 7-O-Methylvariecolortide A, a new spirocyclic diketopiperazine alkaloid from a marine mangrove derived endophytic fungus, Eurotium rubrum. Nat. Prod. Commun., 2010, 5(10), 1583-1586.
[54]  Horn, W. S.; Simmonds M. S. J., Schwartz, R. E. and Blaney, W. M., Phomopsichalasin, a novel antibacterial agent from an endophytic Phomopsis sp. Tetrahedron, 1995, 51(14), 3969-3978.
[55]  Qin, J. C., Zhang, Y. M., Gao, J. M., Bai, M. S., Yang, S. X., Laatsch, H. and Zhang, A. L., Bioactive metabolites produced by Chaetomium globosum, an endophytic fungus isolated from Ginkgo biloba. Bioorg. Med. Chem. Lett., 2009, 19(6), 1572-1574.
[56]  Shoji, M., Andria, A., Yoshimi, T., Hirotaka, S. and Toshiyuki, H., Endophyte composition and cinchona alkaloid production abilities of Cinchona ledgeriana cultivated in Japan. J. Nat. Med., 2019, 73(2), 431-438.
[57]  Vinale, F., Nicoletti, R., Lacatena, F., Marra, R., Sacco, A., Lombardi, N., D’Errico, G., Digilio, M. C., Lorito, M., and Woo, S. L., Secondary metabolites from the endophytic fungus Talaromyces pinophilus. Nat. Prod. Res., 2017, 31(15), 1778-1785.
[58]  Abdulmyanova, L. I., Ruzieva, D. M., Sattarova, R. S. and Gulyamova, T. G., Vinca alkaloids Produced by Endophytic Fungi Isolated from Vinca plants. Int. J. Curr. Microbiol. Appl. Sci., 2018, 7(6), 2244-2250.
[59]  Turk, R. and Cidlowski, A. J., Antiinflammatory action of Glucocorticoids- New mechanisms for old drugs. N. Engl. J. Med., 2005, 353(16), 1711-1723.
[60]  Wu, S. H., Huang, R., Miao, C.P. and Chen, Y.W., Two new steroids from an endophytic fungus Phomopsis sp. Chem. Biodivers., 2013, 10(7), 1276-1283.
[61]  Zhang, W., Draeger, S., Schulz, B. and Krohn, K., Ring B aromatic steroids from an endophytic fungus, Colletotrichum sp. Nat. Prod. Commun., 2009, 4(11), 1449-1454.
[62]  Lu, H., Zou, W. X., Meng, J. C., Hu, J. and Tan, R. X., New bioactive metabolites produced by Colletotrichum sp., an endophytic fungus in Artemisia annua. Plant Science, 2000, 151(1), 67-73.
[63]  Qin, J. C., Gao, J. M., Zhang, Y. M., Yang, S. X., Bai, M.S., Ma, Y.T. and Laatsch, H., Polyhydroxylated steroids from an endophytic fungus, Chaetomium globosum ZY-22 isolated from Ginkgo biloba. Steroids, 2009, 74(9), 786-790.
[64]  Dai, J.Q., Krohn, K., Florke, U., Draeger, S., Schulz, B., Szikszai, A. K., Antus, A., Kurtan, T. and Ree, T. V., Metabolites from the endophytic fungus Nodulisporium sp. from Juniperus cedre. Eur. J. Org. Chem., 2006, 15, 3498-3506.
[65]  Gao, H., Li, G. and Lou, H. X., Structural diversity and biological activities of novel secondary metabolites from endophytes. Molecules, 2018, 23(3), 646.
[66]  Khayat, M. T., Ibrahim, S. R., Mohamed, G. A. and Abdallah, H. M., Anti-inflammatory metabolites from endophytic fungus Fusarium sp. Phytochemistry Letters, 2019, 29, 104-109.
[67]  Hu, Z. Y., Li, Y. Y., Huang, Y. J., Su, W. J. and Shen, Y. M., Three new sesquiterpenoids from Xylaria sp. NCY2. Helv. Chim. Acta, 2008, 91(1), 46-52.
[68]  Silva, G. H., Teles, H. L., Zanardi, L. M., Young, M. C. M., Eberlin, M. N., Hadad, R., Pfenning, L. H., Costa-Neto, C. M., Castro-Gamboa, I., Bolzani, V. D. S. and Araujo, A. R., Cadinane sesquiterpenoids of Phomopsis cassia, an endophytic fungus associated with Cassia spectabilis (Leguminoseae). Phytochemistry, 2006, 67(17), 1964-1969.
[69]  Yuan, L., Zhao, P. J., Ma, J., Lu, C. H. and Shen, Y. M., Labdane and tetranorlabdane diterpenoids from Botryosphaeria sp. MHF, an endophytic fungus of Maytenus hookeri. Helv. Chim. Acta, 2009, 92(6), 1118-1125.
[70]  Pongcharoen, W., Rukachaisirikul, V., Phongpaichit, S., Kuhn, T., Pelzing, M., Sakayaroj, J. and Taylor, W. C., Metabolites from the endophytic fungus Xylaria sp. PSU-D14. Phytochemistry, 2008, 69(9), 1900-1902.
[71]  Pongcharoen, W., Rukachaisirikul, V., Phongpaichit, S., Rungjindamai, N. and Sakayaroj, J., Pimarane diterpene and cytochalasin derivatives from the endophytic fungus Eutypella scoparia PSU-D44. J. Nat. Prod., 2006, 69(5), 856-858.
[72]  Lin, T., Lin, X., Lu, C., Hu, Z., Huang, W., Huang, Y. and Shen, Y., Secondary metabolites of Phomopsis sp. XZ-26, an endophytic fungus from Camptotheca acuminate. Eur. J. Org. Chem., 2009, 18, 2975-2982.
[73]  Fill, T. P., Pereira, G. K., Santos, R. M. G. D. and Rodrigues-Fo, E., Four additional meroterpenes produced by Penicillium sp. found in association with Melia azedarach. Possible biosynthetic intermediates to Austin. Z. Naturforsch. B., 2007, 62(8), 1035-1044.
[74]  Santos, R. M. G. D. and Rodrigues-Fo., E., Further meroterpenes produced by Penicillium sp., an endophyte from Melia azedarach. Z. Naturforsch. C., 2003, 58(9-10), 663-669.
[75]  Yu, H., Zhang, L., Li, L., Zheng, C., Guo, L., Li, W., Sun, P. and Qin, L., Recent developments and future prospects of antimicrobial metabolites produced by endophytes. Microbiol. Res., 2010, 165(6), 437-449.
[76]  Liu, H., Chen, Y., Li, H., Li, S., Tan, H., Liu, Z., Li, D., Liu, H. and Zhang, W., Four new metabolites from the endophytic fungus Diaporthe lithocarpus A740. Fitoterapia, 2019, 137, 104260.
[77]  Mishra, P. D., Verekar, S. A., Almeida, A. K., Roy, S. K., Jain, S., Balakrishnan, A., Vishwakarma, R. and Deshmukh, S. K., Anti-inflammatory and anti-diabetic naphthaquinones from an endophytic fungus Dendryphion nanum (Nees) S. Hughes. Indian J. Chem. B., 2013, 52(4), 565-567.
[78]  Krohn, K., Florke, U., John, M., Root, N., Steingrover, K., Aust, H-J., Draeger, S., Schulz, B., Antus, S., Simonyi, M. and Zsila, F., Biologically active metabolites from fungi. Part 16: Newpreussomerins J, K and L from an endophytic fungus: structure elucidation, crystal structure analysis and determination of absolute configuration by CD calculations. Tetrahedron, 2001, 57(20), 4343-4348.
[79]  Klimova, E. M., Pena, K. R. and Sanchez, S., Endophytes as sources of antibiotics. Biochem. Pharmacol., 2017, 134, 1-17.
[80]  Uzor, P. F., Ebrahim, W., Osadebe, P. O., Nwodo, J. N., Okoye, F. B., Müller, W. E., Lin, W., Liu, Z. and Proksch, P., Metabolites from Combretum dolichopetalum and its associated endophytic fungus Nigrospora oryzaee-Evidence for a metabolic partnership. Fitoterapia, 2015, 105, 147-150.
[81]  Wang, M., Sun, Z. H., Chen, Y. C., Liu, H. X., Li, H. H., Tan, G. H., Li, S. N., Guo, X. L. and Zhang, W. M., Cytotoxic cochlioquinone derivatives from the endophytic fungus Bipolaris sorokiniana derived from Pogostemon cablin. Fitoterapia, 2016, 110, 77-82.
[82]  Li, S. J., Zhang, X., Wang, X. H. and Zhao, C. Q., Novel natural compounds from endophytic fungi with anticancer activity. Eur. J. Med. Chem., 2018, 156, 316-343.
[83]  Huang, J. X., Zhang, J., Zhang, X. R., Zhang, K., Zhang, X. and He, X. R., Mucor fragilis as a novel source of the key pharmaceutical agents podophyllotoxin and kaempferol. Pharm. Biol., 2014, 52 (10), 1237-1243.
[84]  Zhao, J., Ma, D., Luo, M., Wang, W., Zhao, C., Zu, Y., Fu, Y. and Wink, M., In vitro antioxidant activities and antioxidant enzyme activities in HepG2 cells and main active compounds of endophytic fungus from pigeon pea [Cajanus cajan (L.) Millsp.]. Food Res. Int., 2014, 56, 243-251.
[85]  Taechowisan, T., Chanaphat, S., Ruensamran, W. and Phutdhawong, W.S., Antibacterial activity of new flavonoids from Streptomyces sp. BT01; an endophyte in Boesenbergia rotunda (L.). J. Appl. Pharm. Sci., 2014, 4 (4): 8-13.
[86]  Gao, Y., Zhao, J., Zu, Y., Fu, Y., Liang, L., Luo, M., Wang, W. and Efferth, T., Antioxidant properties, superoxide dismutase and glutathione reductase activities in HepG2 cells with a fungal endophyte producing apigenin from pigeon pea [Cajanus cajan (L.) Millsp.]. Food Res. Int., 2012, 49 (1), 147-152.
[87]  El-Elimat, T., Raja, H. A., Graf, T. N., Faeth, S. H., Cech, N. B. and Oberlies, N. H., Flavonolignans from Aspergillus iizukae, a fungal endophyte of milk thistle (Silybum marianum). J. Nat. Prod., 2014, 77 (2), 193-199.
[88]  Talita, P. D. S. F., Gil, R. D. S., Ilsamar, M. S., Sergio, D. A., Tarso, D. C. A., Chrystian, D. A. S. and Raimundo, W. D. S. A., Secondary metabolites from endophytic fungus from Lippia sidoides Cham. J. Med. Plants Res., 2017, 11 (16), 296-306.
[89]  Ramadhan, F., Mukarramah, L., Risma, F. A., Yulian, R., Annisyah, N. H. and Asyiah, I. N., Flavonoids from endophytic bacteria of cosmos caudatus kunth. Leaf as anticancer and antimicrobial. Asian J. Pharm. Clin. Res., 2018, 11 (1), 200.
[90]  Pan, J.H., Jones, E.B.G., She, Z.G., Pang, J.Y. and Lin, Y.C., Review of bioactive compounds from fungi in the South China Sea. Bot. Mar., 2008, 51, 179-190.
[91]  Yin, W.Q., Zou, J.M., She, Z.G., Vrijmoed, L.L.P., Jones, E.B.G. and Lin, Y.C., Two cyclic peptides produced by the endophytic fungus 2221 Castaniopsis fissa. Chin. Chem. Lett., 2005, 16, 219-222.
[92]  Chomcheon, P., Wiyakrutta, S., Aree, T., Sriubolmas, N., Ngamrojanavanich, N., Mahidol, C., Ruchirawat, S. and Kittakoop, P., Curvularides A-E: Antifungal hybrid peptide-polyketides from the endophytic fungus Curvularia geniculata. Chem-Eur. J., 2010, 16 (36), 11178-11185.
[93]  Abdalla, M. A. and Matasyoh, J. C., Endophytes as producers of peptides: an overview about the recently discovered peptides from endophytic microbes. Nat. Prod. Bioprospect., 2014, 4 (5), 257-270.
[94]  Zhang, A. H., Wang, X. Q., Han, W. B., Sun, Y., Guo, Y., Wu, Q., Ge, H. M., Song, Y. C., Ng, S. W., Xu, Q. and Tan, R. X., Discovery of a New Class of Immunosuppressants from Trichothecium roseum Co-inspired by Cross-Kingdom Similarity in Innate Immunity and pharmacophore motif. Chem. Asian. J., 2013, 8 (12), 3101-3107.
[95]  Cui, H. B., Mei, W. L., Miao, C. D., Lin, H. P., Hong, K. and Dai, H. F., Antibacterial Constituents from the endophytic fungus Penicillium sp.0935030 of mangrove plant Acrostichum aureurm. Chem. J. Chinese U., 2008, 33, 407-410.
[96]  Subban, K., Subramani, R. and Johnpaul, M., A novel antibacterial and antifungal phenolic compound from the endophytic fungus Pestalotiopsis mangiferae. Nat. Prod. Res., 2013, 27(16), 1445-1449.
[97]  Song, Y. C., Huang, W. Y., Sun, C., Wang, F. W. and Tan, R. X., Characterization of graphislactone A as the antioxidant and free radical-scavenging substance from the culture of Cephalosporium sp. IFB-E001, an endophytic fungus in Trachelospermum jasminoides. Biol. Pharm. Bull., 2005 28(3), 506-509.
[98]  Schulz, B., Sucker, J., Aust, H. J., Krohn, K., Ludewig, K., Jones, P. G. and Doring, D., Biologically active secondary metabolites of endophytic pezicula species. Mycol. Res., 1995, 99(8), 1007-1015.
[99]  Abba, C. C., Eze, P. M., Abonyi, D. O., Nwachukwu, C. U., Proksch, P., Okoye, F. B. C. and Eboka1, C. J., Phenolic Compounds from Endophytic Pseudofusicoccum sp. Isolated from Annona muricata. Trop. J. Nat. Prod. Res., 2018, 2(7), 332-337.
[100]  Li, E., Jiang, L., Guo, L., Zhang, H. and Che, Y., Pestalachlorides A-C, antifungal metabolites from the plant endophytic fungus Pestalotiopsis adusta. Bioorgan. Med. Chem., 2008, 16 (17), 7894-7899.
[101]  Wang, F. W., Jiao, R. H., Cheng, A. B., Tan, S. H. and Song, Y. C., Antimicrobial potentials of endophytic fungi residing in Quercusvariabilis and brefeldin A obtained from Cladosporium sp. World J. Microbiol. Biotechnol., 2006, 23(1), 79-83.
[102]  Liu, L., Liu, S., Chen, X., Guo, L. and Che, Y., Pestalofones A-E, bioactive cyclohexanone derivatives from the plant endophytic fungus Pestalotiopsis fici. Bioorgan. Med. Chem., 2009, 17(2), 606-613.
[103]  Mousa, W. K. and Raizada, M. N., The diversity of anti-microbial secondary metabolites produced by fungal endophytes: an interdisciplinary perspective. Front. Microbiol., 2013, 4, 65.
[104]  Lin, T., Wang, G. H., Lin, X., Hu, Z. Y., Chen, Q. C., Xu, Y., Zhang, X. K. and Chen, H. F., Three new Oblongolides from Phomopsis sp. XZ-01, an endophytic fungus from Camptotheca acuminate. Molecules, 2011, 16(4), 3351-3359.
[105]  Deshmukh, S., Gupta, M., Prakash, V. and Saxena, S., Endophytic Fungi: A source of potential antifungal compounds. J. Fungi, 2018, 4(3), 77.
[106]  Alvin, A., Kristin, I. M. and Brett, A. N., Exploring the potential of endophytes from medicinal plants as source of antimycobacterial compounds. Microbiol. Res., 2014, 169(7-8), 483-495.
[107]  Nicoletti, R. and Fiorentino, A., Plant bioactive metabolites and drugs produced by endophytic fungi of Spermatophyta. Agriculture, 2015, 5(4), 918-970.