[1] | Wilson, D., Endophyte: The evolution of a term, and clarification of its use and definition. Oikos, 1995, 73(2), 274-276. |
|
[2] | Nair, D. N. and Padmavathy, S., Impact of endophytic microorganisms, plants, environment and humans. Sci World J., 2014, Article ID 250693. 11 pages. |
|
[3] | Bary, A. D., Morphology and physiology of fungi, lichens and myxomycetes. In. Hofmeister's Handbook of Physiological Botany. Leipzig, Germany, 1866, Vol. 2, pp. 1831-1888. |
|
[4] | Yu, H., Zhang, L., Li, L., Zheng, C., Guo, L., Li, W., Sun, P. and Qin, L., Recent developments and future prospects of antimicrobial metabolites produced by endophytes. Microbiol Res., 2010, 165(6), 437-449. |
|
[5] | Gunatilaka, A. A., Natural products from plant-associated microorganisms: distribution, structural diversity, bioactivity and implications of their occurrence. J. Nat. Prod., 2006, 69(3), 509-526. |
|
[6] | Caroll, G., Fungal endophytes in stem and leaves: from latent pathogen to mutualistic symbiont. Ecology, 1988, 69(1), 2-9. |
|
[7] | Clay, K. and Holah, J., Fungal endophyte symbiosis and plant diversity in successional fields. Science, 1999, 285(5434), 1742-1745. |
|
[8] | Wang, J., Huang, Y., Fang, M., Zhang, Y., Zheng, Z., Zhao, Y. and Su, W., Brefeldin A, a cytotoxin produced by Paecilomyces sp. and Aspergillus clavatus isolated from Taxus mairei and Torreya grandis. FEMS Immunol. Med. Mic., 2002, 34(1), 51-57. |
|
[9] | Shashank, A. T., Rakesh, K. K. L., Ramakrishna, D., Kiran, S., Kosturkova, G. and Ravishankar, A. G., Current understandings of endophytes: their relevance, importance and industrial potentials. IOSR J. Biotechnol. Biochem., 2017, 3(3), 43-59. |
|
[10] | Gusman, J. and Vanhaelen, M., Endophytic fungi: an underexploited source of biologically active secondary metabolites. Recent Res. Dev. Phytochem., 2000, 4,187-206. |
|
[11] | Tan, R. X. and Zou, W. X., Endophytes: a rich source of functional metabolites. Nat. Prod. Rep., 2001, 18, 448-459. |
|
[12] | Godstime, O.C., Enwa, F.O., Augustina, J.O., Christopher, E.O., Mechanisms of antimicrobial actions of phytochemicals against enteric pathogens-A review. J. Pharm. Chem. Biol. Sci., 2014, 2(2), 77-85. |
|
[13] | Schulz, B., Boyle, C., Draeger, S., Rommert, A. K. and Krohn, K., Endophytic fungi: a source of novel biologically active secondary metabolites. Mycol. Res., 2002, 106 (9), 996-1004. |
|
[14] | Strobel, G. A., Rainforest endophytes and bioactive products. Crit. Rev. Biotechnol., 2002, 22(4), 315-333. |
|
[15] | Strobel, G. A., Endophytes as source of bioactive products. Microbes Infect., 2003, 5(6), 535-544. |
|
[16] | Strobel, G. A., Daisy, B. H., Castillo, U. and Harper, J., Natural products from endophytic microorganisms. J. Nat. Prod., 2004, 67(2), 257-268. |
|
[17] | Berdy, J., Thoughts and facts about antibiotics: where we are now and where we are heading. J. Antibiot., 2012, 65(8), 385-395. |
|
[18] | Hui, S., Yan, H., Qing, X., Renyuan, Y. and Yongqiang, T, Isolation, characterization and antimicrobial activity of endophytic bacteria from Polygonum cuspidatum. Afr. J. Microbiol. Res., 2013, 7(16), 1496-1504. |
|
[19] | Golinska, P., Wypij, M., Agarkar, G., Rathod, D., Dahm, H. and Rai, M., Endophytic actinobacteria of medicinal plants: diversity and bioactivity. Antonie Van Leeuwenhoek, 2015, 108(2), 267-289. |
|
[20] | Chaudhary, H. S., Shrivastava, B. S., Rawat, A. and Shrivastava, S., Diversity and versatility of actinomycetes and its role in antibiotic production. J. Appl. Pharm. Sci., 2013, 3(8), S83-S94. |
|
[21] | Barka, E. A., Vatsa, P., Sanchez, L., Gaveau-Vaillant, N., Jacquard, C., Klenk, H. P., Clement, C., Ouhdouch, Y. and Wezel, G. P. V., Taxonomy, physiology, and natural products of Actinobacteria. Microbiol. Mol. Biol. R., 2015, 80(1), 1-43. |
|
[22] | Gayathri, P. and Muralikrishnan, V., Isolation and characterization of endophytic actinomycetes from mangrove plants for antimicrobial activity. Int. J. Curr. Microbiol. Appl. Sci., 2013, 2(11), 78-89. |
|
[23] | Singh, R. and Dubey, A. K., Endophytic actinomycetes as emerging source for therapeutic compounds. Indo Global J. Pharm. Sci., 2015, 5(2), 106-116. |
|
[24] | Saar, D. E., Polans, N. O., Sorensen, P. D. and Duvall, M. R., Angiosperm DNA contamination by endophytic fungi: detection and methods of avoidance. Plant Mol. Biol. Rep., 2001, 19(3), 249−260. |
|
[25] | Bode, H. B., Bethe, B., Hofs, R. and Zeeck, A., Big effects from small changes: possible way to explore Nature’s chemical diversity. ChemBioChem., 2002, 3(7), 619-627. |
|
[26] | Sturz, A. V., Christie, B. R. and Nowak, J., Bacterial endophytes: potential role in developing sustainable systems of crop production. Cr. Rev. Plant Sci., 2000, 19(1), 1-30. |
|
[27] | Arnold, A., Maynard, Z., Gilbert, G., Coley, P. and Kursar, T., Are tropical fungal endophytes hyperdiverse? Ecol. Lett., 2000, 3(4), 267-274. |
|
[28] | Clay, K., Fungal endophytes of plants: biological and chemical diversity. Nat. Toxins, 1993, 1(3), 147-149. |
|
[29] | Hata, K., Futai, K. and Tsuda, M., Seasonal and needle age-dependent changes of the endophytic mycobiota in Pinus thunbergii and Pinus densiflora needles. Can. J. Botany, 1998, 76(2), 245-250. |
|
[30] | Leuchtmann, A., Petrini, O., Petrini, L. E. and Carroll, G. C., Isozyme polymorphism in six endophytic Phyllosticta species. Mycol. Res., 1992, 96(4), 287-294. |
|
[31] | McCutcheon, T. L., Carroll, G. C. and Schwab, S., Genotypic diversity in populations of a fungal endophyte from Douglas fir. Mycologia, 1993, 85(2), 180-186. |
|
[32] | Lappalainen, J. H. and Yli-Mattila, T., Genetic diversity in Finland of the birch endophyte Gnomonia setacea as determined by RAPD-PCR markers. Mycol. Res., 1999, 103(3), 328-332. |
|
[33] | Reddy, P. V., Bergen, M. S., Patel, R. and White, J. F. An examination of molecular phylogeny and morphology of the grass endophyte Balansia claviceps and similar species. Mycologia, 1998, 90(1), 108-117. |
|
[34] | Mathur, S.B. and Jorgensen, J., International rules for seed testing. Prof. Inst. Seed test. Assoc. ISTA Historical papers, 2002, 1, 1-34. |
|
[35] | Neergaard, P. In: Seed Pathology; Scientific Publishers, India, 2011; Vol. 1, pp. 739-754. |
|
[36] | Abdullah, S. K., AL-Saad, I. and Essa, R. A., Mycobiota and natural occurrence of sterigmatocysin in herbal drugs in Iraq. Basrah J. Sci. B., 2002, 20, 1-8. |
|
[37] | Mitter, B., Petric, A., Shin, M. W., Chain, P. S. G., Hauberg-Lotte, L., Reinhold-Hurek, B., Nowak, J. and Sessitsch, A., Comparative genome analysis of Burkholderia phytofirmans PsJN reveals a wide spectrum of endophytic lifestyles based on interaction strategies with host plants. Front. Plant Sci., 2013, 4, 120. |
|
[38] | Berg, G., Grube, M., Schloter, M. and Smalla, K., Unraveling the plant microbiome: looking back and future perspectives. Front. Microbiol., 2014, 5, 148. |
|
[39] | Rehman, A., Sahi, S. T., Khan, M. A. and Mehboob, S., Fungi associated with bark, twigs and roots of declined shisham (dalbergia sissoo roxb.) Trees in Punjab Pakistan. Pak. J. Phytopathol., 2012, 24(2), 152-158. |
|
[40] | Karunai, S. B. and Balagengatharathilagam, P., Isolation and screening of endophytic fungi from medicinal plants of virudhunagar district for antimicrobial activity. Int. J. Sci. Nature, 2014, 5(1), 147-155. |
|
[41] | Subramanian, C. V., Hypomycetes an account of Indian species except Cercospora. Council of Agricultural Research, New Delhi, 1971, 180-189. |
|
[42] | Barnett, H. L.; Hunter, B. B. Illustrated Genera of Imperfect Fungi, 3rd ed.; Burgers Company, Minneapolis, 1972. |
|
[43] | Youngbae, S., Kim, S. and Park, C. W., A phylogenetic study of polygonum sect. tovara (polygonaceae) based on ITS sequences of nuclear ribosomal DNA. J. Plant Biol., 1997, 40(1), 47-52. |
|
[44] | Chen, X. Y., Qi, Y. D., Wei, J. H., Zhang, Z., Wang, D. L., Feng, J. D. and Gan, B. C., Molecular identification of endophytic fungi from medicinal plant Huperzia serrata based on rDNA ITS analysis. World J. Microbiol. Biotechnol., 2010, 27(3), 495-503. |
|
[45] | Hsiang, Y.H., Hertzberg, R., Hecht, S. and Liu, L.F., Camptothecin induces protein-linked DNA breaks via mammalian DNA topoisomerase I. J. Biol. Chem., 1985, 260, 14873-14878. |
|
[46] | Pommier, Y., Topoisomerase I inhibitors: camptothecins and beyond. Nat. Rev. Cancer, 2006, 6, 789-802. |
|
[47] | Shweta, S., Zuehlke, S., Ramesha, B.T., Priti, V., Kumar, P. M., Ravikanth, G., Spiteller, M., Vasudeva, R. and Shaanker, R. U., Endophytic fungal strains of Fusarium solani, from Apodytes dimidiata E. Mey. ex Arn (Icacinaceae) produce camptothecin, 10-hydroxycamptothecin and 9-methoxycamptothecin. Phytochemistry, 2010, 71, 117-122. |
|
[48] | Fabio, A., Proença, B. and Edson, R. F., Four spiroquinazoline alkaloids from Eupenicillium sp. isolated as an endophyte fungus from the leaves of Murraya paniculata (Rutaceae). Biochem. Syst. Ecol., 2005, 33(3), 257-268. |
|
[49] | Liu, J. Y., Song, Y. C., Zhang, Z., Wang, L., Guo, Z. J., Zou, W. X. and Tan, R. X., Aspergillus fumigatus CY018, an endophytic fungus in Cynodon dactylon as a versatile producer of new and bioactive metabolites. J. Biotechnol., 2004, 114(3), 279-287. |
|
[50] | Shen, L., Ye, Y. H., Wang, X. T., Zhu, H. L., Xu, C., Song, Y. C., Li, H. and Tan, R. X., Structure and total synthesis of aspernigerin: a novel Cytotoxic endophyte metabolite. Chem-Eur. J., 2006, 12(16), 4393-4396. |
|
[51] | Rukachaisirikul, V., Sommart, U., Phongpaichit, S., Sakayaroj, J. and Kirtikara, K., Metabolites from the endophytic fungus Phomopsis sp. PSU-D15. Phytochemistry, 2008, 69(3), 783-787. |
|
[52] | Liu, X., Dong, M., Chen, X., Jiang, M., Lv, X. and Zhou, J., Antimicrobial activity of an endophytic Xylaria sp. YX-28 and identification of its antimicrobial compound 7-amino-4-methylcoumarin. Appl. Microbiol. Biot., 2007, 78(2), 241-247. |
|
[53] | Li, D. L., Li, X. M., Proksch, P. and Wang, B. G., 7-O-Methylvariecolortide A, a new spirocyclic diketopiperazine alkaloid from a marine mangrove derived endophytic fungus, Eurotium rubrum. Nat. Prod. Commun., 2010, 5(10), 1583-1586. |
|
[54] | Horn, W. S.; Simmonds M. S. J., Schwartz, R. E. and Blaney, W. M., Phomopsichalasin, a novel antibacterial agent from an endophytic Phomopsis sp. Tetrahedron, 1995, 51(14), 3969-3978. |
|
[55] | Qin, J. C., Zhang, Y. M., Gao, J. M., Bai, M. S., Yang, S. X., Laatsch, H. and Zhang, A. L., Bioactive metabolites produced by Chaetomium globosum, an endophytic fungus isolated from Ginkgo biloba. Bioorg. Med. Chem. Lett., 2009, 19(6), 1572-1574. |
|
[56] | Shoji, M., Andria, A., Yoshimi, T., Hirotaka, S. and Toshiyuki, H., Endophyte composition and cinchona alkaloid production abilities of Cinchona ledgeriana cultivated in Japan. J. Nat. Med., 2019, 73(2), 431-438. |
|
[57] | Vinale, F., Nicoletti, R., Lacatena, F., Marra, R., Sacco, A., Lombardi, N., D’Errico, G., Digilio, M. C., Lorito, M., and Woo, S. L., Secondary metabolites from the endophytic fungus Talaromyces pinophilus. Nat. Prod. Res., 2017, 31(15), 1778-1785. |
|
[58] | Abdulmyanova, L. I., Ruzieva, D. M., Sattarova, R. S. and Gulyamova, T. G., Vinca alkaloids Produced by Endophytic Fungi Isolated from Vinca plants. Int. J. Curr. Microbiol. Appl. Sci., 2018, 7(6), 2244-2250. |
|
[59] | Turk, R. and Cidlowski, A. J., Antiinflammatory action of Glucocorticoids- New mechanisms for old drugs. N. Engl. J. Med., 2005, 353(16), 1711-1723. |
|
[60] | Wu, S. H., Huang, R., Miao, C.P. and Chen, Y.W., Two new steroids from an endophytic fungus Phomopsis sp. Chem. Biodivers., 2013, 10(7), 1276-1283. |
|
[61] | Zhang, W., Draeger, S., Schulz, B. and Krohn, K., Ring B aromatic steroids from an endophytic fungus, Colletotrichum sp. Nat. Prod. Commun., 2009, 4(11), 1449-1454. |
|
[62] | Lu, H., Zou, W. X., Meng, J. C., Hu, J. and Tan, R. X., New bioactive metabolites produced by Colletotrichum sp., an endophytic fungus in Artemisia annua. Plant Science, 2000, 151(1), 67-73. |
|
[63] | Qin, J. C., Gao, J. M., Zhang, Y. M., Yang, S. X., Bai, M.S., Ma, Y.T. and Laatsch, H., Polyhydroxylated steroids from an endophytic fungus, Chaetomium globosum ZY-22 isolated from Ginkgo biloba. Steroids, 2009, 74(9), 786-790. |
|
[64] | Dai, J.Q., Krohn, K., Florke, U., Draeger, S., Schulz, B., Szikszai, A. K., Antus, A., Kurtan, T. and Ree, T. V., Metabolites from the endophytic fungus Nodulisporium sp. from Juniperus cedre. Eur. J. Org. Chem., 2006, 15, 3498-3506. |
|
[65] | Gao, H., Li, G. and Lou, H. X., Structural diversity and biological activities of novel secondary metabolites from endophytes. Molecules, 2018, 23(3), 646. |
|
[66] | Khayat, M. T., Ibrahim, S. R., Mohamed, G. A. and Abdallah, H. M., Anti-inflammatory metabolites from endophytic fungus Fusarium sp. Phytochemistry Letters, 2019, 29, 104-109. |
|
[67] | Hu, Z. Y., Li, Y. Y., Huang, Y. J., Su, W. J. and Shen, Y. M., Three new sesquiterpenoids from Xylaria sp. NCY2. Helv. Chim. Acta, 2008, 91(1), 46-52. |
|
[68] | Silva, G. H., Teles, H. L., Zanardi, L. M., Young, M. C. M., Eberlin, M. N., Hadad, R., Pfenning, L. H., Costa-Neto, C. M., Castro-Gamboa, I., Bolzani, V. D. S. and Araujo, A. R., Cadinane sesquiterpenoids of Phomopsis cassia, an endophytic fungus associated with Cassia spectabilis (Leguminoseae). Phytochemistry, 2006, 67(17), 1964-1969. |
|
[69] | Yuan, L., Zhao, P. J., Ma, J., Lu, C. H. and Shen, Y. M., Labdane and tetranorlabdane diterpenoids from Botryosphaeria sp. MHF, an endophytic fungus of Maytenus hookeri. Helv. Chim. Acta, 2009, 92(6), 1118-1125. |
|
[70] | Pongcharoen, W., Rukachaisirikul, V., Phongpaichit, S., Kuhn, T., Pelzing, M., Sakayaroj, J. and Taylor, W. C., Metabolites from the endophytic fungus Xylaria sp. PSU-D14. Phytochemistry, 2008, 69(9), 1900-1902. |
|
[71] | Pongcharoen, W., Rukachaisirikul, V., Phongpaichit, S., Rungjindamai, N. and Sakayaroj, J., Pimarane diterpene and cytochalasin derivatives from the endophytic fungus Eutypella scoparia PSU-D44. J. Nat. Prod., 2006, 69(5), 856-858. |
|
[72] | Lin, T., Lin, X., Lu, C., Hu, Z., Huang, W., Huang, Y. and Shen, Y., Secondary metabolites of Phomopsis sp. XZ-26, an endophytic fungus from Camptotheca acuminate. Eur. J. Org. Chem., 2009, 18, 2975-2982. |
|
[73] | Fill, T. P., Pereira, G. K., Santos, R. M. G. D. and Rodrigues-Fo, E., Four additional meroterpenes produced by Penicillium sp. found in association with Melia azedarach. Possible biosynthetic intermediates to Austin. Z. Naturforsch. B., 2007, 62(8), 1035-1044. |
|
[74] | Santos, R. M. G. D. and Rodrigues-Fo., E., Further meroterpenes produced by Penicillium sp., an endophyte from Melia azedarach. Z. Naturforsch. C., 2003, 58(9-10), 663-669. |
|
[75] | Yu, H., Zhang, L., Li, L., Zheng, C., Guo, L., Li, W., Sun, P. and Qin, L., Recent developments and future prospects of antimicrobial metabolites produced by endophytes. Microbiol. Res., 2010, 165(6), 437-449. |
|
[76] | Liu, H., Chen, Y., Li, H., Li, S., Tan, H., Liu, Z., Li, D., Liu, H. and Zhang, W., Four new metabolites from the endophytic fungus Diaporthe lithocarpus A740. Fitoterapia, 2019, 137, 104260. |
|
[77] | Mishra, P. D., Verekar, S. A., Almeida, A. K., Roy, S. K., Jain, S., Balakrishnan, A., Vishwakarma, R. and Deshmukh, S. K., Anti-inflammatory and anti-diabetic naphthaquinones from an endophytic fungus Dendryphion nanum (Nees) S. Hughes. Indian J. Chem. B., 2013, 52(4), 565-567. |
|
[78] | Krohn, K., Florke, U., John, M., Root, N., Steingrover, K., Aust, H-J., Draeger, S., Schulz, B., Antus, S., Simonyi, M. and Zsila, F., Biologically active metabolites from fungi. Part 16: Newpreussomerins J, K and L from an endophytic fungus: structure elucidation, crystal structure analysis and determination of absolute configuration by CD calculations. Tetrahedron, 2001, 57(20), 4343-4348. |
|
[79] | Klimova, E. M., Pena, K. R. and Sanchez, S., Endophytes as sources of antibiotics. Biochem. Pharmacol., 2017, 134, 1-17. |
|
[80] | Uzor, P. F., Ebrahim, W., Osadebe, P. O., Nwodo, J. N., Okoye, F. B., Müller, W. E., Lin, W., Liu, Z. and Proksch, P., Metabolites from Combretum dolichopetalum and its associated endophytic fungus Nigrospora oryzaee-Evidence for a metabolic partnership. Fitoterapia, 2015, 105, 147-150. |
|
[81] | Wang, M., Sun, Z. H., Chen, Y. C., Liu, H. X., Li, H. H., Tan, G. H., Li, S. N., Guo, X. L. and Zhang, W. M., Cytotoxic cochlioquinone derivatives from the endophytic fungus Bipolaris sorokiniana derived from Pogostemon cablin. Fitoterapia, 2016, 110, 77-82. |
|
[82] | Li, S. J., Zhang, X., Wang, X. H. and Zhao, C. Q., Novel natural compounds from endophytic fungi with anticancer activity. Eur. J. Med. Chem., 2018, 156, 316-343. |
|
[83] | Huang, J. X., Zhang, J., Zhang, X. R., Zhang, K., Zhang, X. and He, X. R., Mucor fragilis as a novel source of the key pharmaceutical agents podophyllotoxin and kaempferol. Pharm. Biol., 2014, 52 (10), 1237-1243. |
|
[84] | Zhao, J., Ma, D., Luo, M., Wang, W., Zhao, C., Zu, Y., Fu, Y. and Wink, M., In vitro antioxidant activities and antioxidant enzyme activities in HepG2 cells and main active compounds of endophytic fungus from pigeon pea [Cajanus cajan (L.) Millsp.]. Food Res. Int., 2014, 56, 243-251. |
|
[85] | Taechowisan, T., Chanaphat, S., Ruensamran, W. and Phutdhawong, W.S., Antibacterial activity of new flavonoids from Streptomyces sp. BT01; an endophyte in Boesenbergia rotunda (L.). J. Appl. Pharm. Sci., 2014, 4 (4): 8-13. |
|
[86] | Gao, Y., Zhao, J., Zu, Y., Fu, Y., Liang, L., Luo, M., Wang, W. and Efferth, T., Antioxidant properties, superoxide dismutase and glutathione reductase activities in HepG2 cells with a fungal endophyte producing apigenin from pigeon pea [Cajanus cajan (L.) Millsp.]. Food Res. Int., 2012, 49 (1), 147-152. |
|
[87] | El-Elimat, T., Raja, H. A., Graf, T. N., Faeth, S. H., Cech, N. B. and Oberlies, N. H., Flavonolignans from Aspergillus iizukae, a fungal endophyte of milk thistle (Silybum marianum). J. Nat. Prod., 2014, 77 (2), 193-199. |
|
[88] | Talita, P. D. S. F., Gil, R. D. S., Ilsamar, M. S., Sergio, D. A., Tarso, D. C. A., Chrystian, D. A. S. and Raimundo, W. D. S. A., Secondary metabolites from endophytic fungus from Lippia sidoides Cham. J. Med. Plants Res., 2017, 11 (16), 296-306. |
|
[89] | Ramadhan, F., Mukarramah, L., Risma, F. A., Yulian, R., Annisyah, N. H. and Asyiah, I. N., Flavonoids from endophytic bacteria of cosmos caudatus kunth. Leaf as anticancer and antimicrobial. Asian J. Pharm. Clin. Res., 2018, 11 (1), 200. |
|
[90] | Pan, J.H., Jones, E.B.G., She, Z.G., Pang, J.Y. and Lin, Y.C., Review of bioactive compounds from fungi in the South China Sea. Bot. Mar., 2008, 51, 179-190. |
|
[91] | Yin, W.Q., Zou, J.M., She, Z.G., Vrijmoed, L.L.P., Jones, E.B.G. and Lin, Y.C., Two cyclic peptides produced by the endophytic fungus 2221 Castaniopsis fissa. Chin. Chem. Lett., 2005, 16, 219-222. |
|
[92] | Chomcheon, P., Wiyakrutta, S., Aree, T., Sriubolmas, N., Ngamrojanavanich, N., Mahidol, C., Ruchirawat, S. and Kittakoop, P., Curvularides A-E: Antifungal hybrid peptide-polyketides from the endophytic fungus Curvularia geniculata. Chem-Eur. J., 2010, 16 (36), 11178-11185. |
|
[93] | Abdalla, M. A. and Matasyoh, J. C., Endophytes as producers of peptides: an overview about the recently discovered peptides from endophytic microbes. Nat. Prod. Bioprospect., 2014, 4 (5), 257-270. |
|
[94] | Zhang, A. H., Wang, X. Q., Han, W. B., Sun, Y., Guo, Y., Wu, Q., Ge, H. M., Song, Y. C., Ng, S. W., Xu, Q. and Tan, R. X., Discovery of a New Class of Immunosuppressants from Trichothecium roseum Co-inspired by Cross-Kingdom Similarity in Innate Immunity and pharmacophore motif. Chem. Asian. J., 2013, 8 (12), 3101-3107. |
|
[95] | Cui, H. B., Mei, W. L., Miao, C. D., Lin, H. P., Hong, K. and Dai, H. F., Antibacterial Constituents from the endophytic fungus Penicillium sp.0935030 of mangrove plant Acrostichum aureurm. Chem. J. Chinese U., 2008, 33, 407-410. |
|
[96] | Subban, K., Subramani, R. and Johnpaul, M., A novel antibacterial and antifungal phenolic compound from the endophytic fungus Pestalotiopsis mangiferae. Nat. Prod. Res., 2013, 27(16), 1445-1449. |
|
[97] | Song, Y. C., Huang, W. Y., Sun, C., Wang, F. W. and Tan, R. X., Characterization of graphislactone A as the antioxidant and free radical-scavenging substance from the culture of Cephalosporium sp. IFB-E001, an endophytic fungus in Trachelospermum jasminoides. Biol. Pharm. Bull., 2005 28(3), 506-509. |
|
[98] | Schulz, B., Sucker, J., Aust, H. J., Krohn, K., Ludewig, K., Jones, P. G. and Doring, D., Biologically active secondary metabolites of endophytic pezicula species. Mycol. Res., 1995, 99(8), 1007-1015. |
|
[99] | Abba, C. C., Eze, P. M., Abonyi, D. O., Nwachukwu, C. U., Proksch, P., Okoye, F. B. C. and Eboka1, C. J., Phenolic Compounds from Endophytic Pseudofusicoccum sp. Isolated from Annona muricata. Trop. J. Nat. Prod. Res., 2018, 2(7), 332-337. |
|
[100] | Li, E., Jiang, L., Guo, L., Zhang, H. and Che, Y., Pestalachlorides A-C, antifungal metabolites from the plant endophytic fungus Pestalotiopsis adusta. Bioorgan. Med. Chem., 2008, 16 (17), 7894-7899. |
|
[101] | Wang, F. W., Jiao, R. H., Cheng, A. B., Tan, S. H. and Song, Y. C., Antimicrobial potentials of endophytic fungi residing in Quercusvariabilis and brefeldin A obtained from Cladosporium sp. World J. Microbiol. Biotechnol., 2006, 23(1), 79-83. |
|
[102] | Liu, L., Liu, S., Chen, X., Guo, L. and Che, Y., Pestalofones A-E, bioactive cyclohexanone derivatives from the plant endophytic fungus Pestalotiopsis fici. Bioorgan. Med. Chem., 2009, 17(2), 606-613. |
|
[103] | Mousa, W. K. and Raizada, M. N., The diversity of anti-microbial secondary metabolites produced by fungal endophytes: an interdisciplinary perspective. Front. Microbiol., 2013, 4, 65. |
|
[104] | Lin, T., Wang, G. H., Lin, X., Hu, Z. Y., Chen, Q. C., Xu, Y., Zhang, X. K. and Chen, H. F., Three new Oblongolides from Phomopsis sp. XZ-01, an endophytic fungus from Camptotheca acuminate. Molecules, 2011, 16(4), 3351-3359. |
|
[105] | Deshmukh, S., Gupta, M., Prakash, V. and Saxena, S., Endophytic Fungi: A source of potential antifungal compounds. J. Fungi, 2018, 4(3), 77. |
|
[106] | Alvin, A., Kristin, I. M. and Brett, A. N., Exploring the potential of endophytes from medicinal plants as source of antimycobacterial compounds. Microbiol. Res., 2014, 169(7-8), 483-495. |
|
[107] | Nicoletti, R. and Fiorentino, A., Plant bioactive metabolites and drugs produced by endophytic fungi of Spermatophyta. Agriculture, 2015, 5(4), 918-970. |
|