Journal of Food and Nutrition Research
ISSN (Print): 2333-1119 ISSN (Online): 2333-1240 Website: http://www.sciepub.com/journal/jfnr Editor-in-chief: Prabhat Kumar Mandal
Open Access
Journal Browser
Go
Journal of Food and Nutrition Research. 2020, 8(6), 244-251
DOI: 10.12691/jfnr-8-6-1
Open AccessArticle

Effect of Vacuum Packaging and Natural Ingredients on the Physical and Microbiological Properties of Fresh Oregano (Origanum syriacum) Products

Samer Mudalal1, , Doaa Kanan1, Hassan abu qaoud2 and Gianluigi Mauriello3

1Department of Nutrition and Food Technology, Faculty of Agriculture and Veterinary Medicine, An-Najah National University, Nablus, Palestine, P.O. Box 7

2Department of Plant Production and Protection, Faculty of Agriculture, An-Najah National University, Nablus, West Bank, Palestine

3Department of Agricultural Sciences, University of Naples Federico II, Via Università, 100 - 80055 Portici, Italy

Pub. Date: July 05, 2020

Cite this paper:
Samer Mudalal, Doaa Kanan, Hassan abu qaoud and Gianluigi Mauriello. Effect of Vacuum Packaging and Natural Ingredients on the Physical and Microbiological Properties of Fresh Oregano (Origanum syriacum) Products. Journal of Food and Nutrition Research. 2020; 8(6):244-251. doi: 10.12691/jfnr-8-6-1

Abstract

Fresh oregano (Origanum syriacum L.) is considered one of the most commonly used aromatic herbs in the Mediterranean diet. This study aimed to evaluate the possibility to extend the shelf life of fresh oregano leaves by employing vacuum packaging and natural ingredients. In this study, 132 samples of fresh oregano have been prepared in vacuum packs and divided into four treatments (n=33/treatments). The oregano recipes treatments were labeled as A (Only fresh oregano leaves 100%, Control), B (fresh oregano 63.2%, fresh onion 15%, olive oil 20%, NaCl 1.8%), C (fresh oregano 61.91%, fresh onion 15%, olive oil 20%, NaCl 1.8%, sumac powder 1.29%), and D (Fresh oregano 59.2%, 15% Fresh onion, 20% oil, 1.8% salt, 4% lactic Acid, ultimate pH 4.4). The potential growth of Clostridium botulinum by using Clostridium sporogenes DSM795 as a surrogate microbe has been assessed. Moreover, color attributes (L*, a*, b*), microbiological counts (aerobic, anaerobic, and psychrotrophic as well as yeast and molds), and pH- values have been evaluated during the storage period (42 days). Both spot and spreading agar journey methods showed that groups B and D could be resisted the growth of Clostridium sporogenes DSM 795. It was found that lactic acid was the most effective ingredient against aerobic, anaerobic, and psychrotrophic bacteria if compared to sumac and onion. On another hand, Group C showed significantly (p<0.05) the lowest L* and b*-values if compared with other groups. In conclusion, the addition of lactic acid (group D) was the most effective antimicrobial agent in comparison with other ingredients. In addition, lactic acid enhanced the safety of the product by inhibition of the growth of Clostridium sporogenes DSM 795.

Keywords:
oregano color traits Clostridium sporogenes vacuum sumac

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Figures

Figure of 12

References:

[1]  Skoula, M., & Harborne, J. B. (2002). The taxonomy and chemistry of Origanum. Oregano. In: The Genera Origanum and Lippia, ( Kintzios SE, ed.). CRC Press, Boca Raton, FL, 67-108.
 
[2]  Arcila-Lozano, C. C., Loarca-Piña, G., Lecona-Uribe, S., & González de Mejía, E. (2004). El orégano: propiedades, composición y actividad biológica de sus componentes. Archivos Latinoamericanos de nutrición, 54(1): 100-111.‏
 
[3]  Ibrahim, S. K., Ibrahim, L., Ismail, A., Basal, A., Kayal, M., Ghanem, H., & Rammel, S. (2011). Differentiation of different species of Origanum and Thymus using proteins and isoenzymes profile. International Journal of Botany, 7(4): 283-288.‏
 
[4]  Salehi, B., Mishra, A. P., Shukla, I., Sharifi‐Rad, M., Contreras, M. D. M., Segura‐Carretero, A.,. & Sharifi‐Rad, J. (2018). Thymol, thyme, and other plant sources: Health and potential uses. Phytotherapy Research, 32(9): 1688-1706.‏
 
[5]  Xu, H. (2006). Delling M, Jun JC, and Clapham DE. Oregano, thyme and clove-derived flavors and skin sensitizers activate specific TRP channels. Nat Neurosci, 9: 628-635.‏
 
[6]  The Turkish Origanum species S.E. Kintzios (Ed.), Origanum, the genera and Origanum and Lippia, London and New York, Taylor and Francis (2002), pp. 109-126.
 
[7]  Hazzit, M., Baaliouamer, A., Faleiro, M. L., & Miguel, M. G. (2006). Composition of the essential oils of Thymus and Origanum species from Algeria and their antioxidant and antimicrobial activities. Journal of Agricultural and Food Chemistry, 54(17): 6314-6321.‏
 
[8]  De Palma, C., Falcone, S., Panzeri, C., Radice, S., Bassi, M. T., & Clementi, E. (2008). Endothelial nitric oxide synthase overexpression by neuronal cells in neurodegeneration: a link between inflammation and neuroprotection. Journal of Neurochemistry, 106(1): 193-204.‏
 
[9]  Ocana-Fuentes, A., Arranz-Gutierrez, E., Senorans, F. J., & Reglero, G. (2010). Supercritical fluid extraction of oregano (Origanum vulgare) essentials oils: anti-inflammatory properties based on cytokine response on THP-1 macrophages. Food and Chemical Toxicology, 48(6): 1568-1575.‏
 
[10]  de Souza, E. L., de Barros, J. C., de Oliveira, C. E. V., & da Conceição, M. L. (2010). Influence of Origanum vulgare L. essential oil on enterotoxin production, membrane permeability and surface characteristics of Staphylococcus aureus. International Journal of Food Microbiology, 137(2-3): 308-311.‏
 
[11]  Salgueiro, L. R., Pinto, E., Goncalves, M. J., Pina-Vaz, C., Cavaleiro, C., Rodrigues, A. G., ... & Martinez-de-Oliveira, J. (2004). Chemical composition and antifungal activity of the essential oil of Thymbra capitata. Planta Medica, 70(06): 572-575.‏
 
[12]  Ali-Shtayeh, M. S., Jamous, R. M., Abu-Zaitoun, S. Y., Akkawi, R. J., Kalbouneh, S. R., Dudai, N., & Bernstein, N. (2018). Secondary treated effluent irrigation did not impact chemical composition, and enzyme inhibition activities of essential oils from Origanum syriacum var. syriacum. Industrial Crops and Products, 111: 775-786.‏
 
[13]  Barrett, D.M. and Lloyd, B. (2012), Advanced preservation methods and nutrient retention in fruits and vegetables. Journal of the Science of Food and Agriculture, 92 (1): 7-22.
 
[14]  Montville, T.J., Matthews K.R. (2001). Chapter 2: Principles which influence microbial growth, survival, and death in foods. In: Doyle MP, Beuchat LR, Montville TJ, editors. Food microbiology: fundamentals and frontiers. Washington (DC): ASM Pr. p 13-32.
 
[15]  Saxena, G., McCutcheon, A. R., Farmer, S., Towers, G. H. N., & Hancock, R. E. W. (1994). Antimicrobial constituents of Rhus glabra. Journal of Ethnopharmacology, 42(2): 95-99.‏
 
[16]  Wang, C., Chang, T., Yang, H., & Cui, M. (2015). Antibacterial mechanism of lactic acid on physiological and morphological properties of Salmonella enteritidis, Escherichia coli and Listeria monocytogenes. Food Control, 47: 231-236.‏
 
[17]  Vishaalini, C., Hema Shenpagan, N., & Lali G. (2016). Antibacterial activity on Medicinal herbs. Int. J. Urr. Microbiol. App. Sci., 5 (10): 814-819.
 
[18]  Bhat, Z. F., Pathak, V., Bukhari, S. A. A., Ahmad, S. R., & Bhat, H. (2011). Quality changes in Chevon Harrisa (meat based product) during Refrigerated Storage. Int. J. Meat Sci., 1(1): 52-61.‏
 
[19]  Rostro-Alanis, M. D. J., Báez-González, J., Torres-Alvarez, C., Parra-Saldívar, R., Rodriguez-Rodriguez, J., & Castillo, S. (2019). Chemical composition and biological activities of oregano essential oil and its fractions obtained by vacuum distillation. Molecules, 24(10): 1904.‏
 
[20]  Shabbir, A. (2012). Rhus coriaria linn, a plant of medicinal, nutritional and industrial importance: A review. J Anim Plant Sci., 22(2): 505-12.‏
 
[21]  Brar, J.K., Rai, D.R., Singh, A. et al.(2013) Biochemical and physiological changes in Fenugreek (Trigonella foenum- graecum L.) leaves during storage under modified atmosphere packaging. J Food Sci Technol, 50 (4): 696-704.
 
[22]  Ferrante, A., Incrocci, L., Maggini, R., Serra, G., & Tognoni, F. (2004). Colour changes of fresh-cut leafy vegetables during storage. J. Food Agric. Environ., 2(3&4): 40-44.‏
 
[23]  Manolopoulou, E., & Varzakas, T. (2016). Effect of temperature in color changes of green vegetables. Current Research in Nutrition and Food Science Journal, 4 (Special Issue Nutrition in Conference October 2016): 10-17.‏
 
[24]  Kaur, P., Rai, D. R., & Paul, S. (2011). Quality changes in fresh‐cut spinach (Spinacia oleracea) under modified atmospheres with perforations. Journal of food Quality, 34(1): 10-18.‏
 
[25]  Tan, C. T., & Francis, F. J. (1962). Effect of processing temperature on pigments and color of spinach. Journal of Food Science, 27(3): 232-241.‏
 
[26]  Lalitha, K. V., & Gopakumar, K. (2005). Influence of temperature and pH on growth and toxin production from spores of Clostridium botulinum. Journal of Aquatic Food Product Technology, 14(2): 39-50.‏
 
[27]  Tayyba, G., Muhammad, I., Zahid, A., Tahir, A., Zubia, Z., Asma, T., Muhammad, K., Nudrat, E., & Sajid M. (2014) Recent trends in lactic acid biotechnology: A brief review on production to purification. J. Radiat. Res Appl. Sc., 7(2): 222-229.