Journal of Food and Nutrition Research
ISSN (Print): 2333-1119 ISSN (Online): 2333-1240 Website: Editor-in-chief: Prabhat Kumar Mandal
Open Access
Journal Browser
Journal of Food and Nutrition Research. 2020, 8(5), 225-230
DOI: 10.12691/jfnr-8-5-2
Open AccessArticle

Anti-inflammatory Activity of Indonesian Propolis in Zebrafish (Danio rerio) Larvae

Indra Wibowo1, , Fauzi Ramadhani Nasution1, Intan Taufik1, Roya Suffah Zain1, Nissa Marlinda1, Nuruliawaty Utami2, Putri Yunitha Wardiny1, Ramadhani Eka Putra1, Marselina Irasonia Tan1 and Sony Heru Sumarsono1

1School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung, Indonesia

2Research Center for Biotechnology, Cibinong Science Center, Indonesian Institute of Sciences, Bogor, Indonesia

Pub. Date: June 11, 2020

Cite this paper:
Indra Wibowo, Fauzi Ramadhani Nasution, Intan Taufik, Roya Suffah Zain, Nissa Marlinda, Nuruliawaty Utami, Putri Yunitha Wardiny, Ramadhani Eka Putra, Marselina Irasonia Tan and Sony Heru Sumarsono. Anti-inflammatory Activity of Indonesian Propolis in Zebrafish (Danio rerio) Larvae. Journal of Food and Nutrition Research. 2020; 8(5):225-230. doi: 10.12691/jfnr-8-5-2


One candidate for anti-inflammatory agents, polyphenol-rich Indonesian propolis, has been rarely studied. This study was conducted to confirm the presence of its anti-inflammatory activity. Zebrafish larvae, as a model, were divided into four groups consisting of a control group, a lipopolysaccharide (LPS)-treated group, an LPS-treated group followed by treatment in propolis solution for 24 hours, and a propolis-treated group. Myeloid leukocytes migrating into the intestine and intestinal goblet cells were counted. The expression level of pro-inflammatory (tnf-α, il-1β, il-8, and il-6) and anti-inflammatory (il-10) cytokine genes were determined using quantitative reverse transcription polymerase chain reaction (RT-PCR). It was shown that Indonesian propolis administration to LPS-induced zebrafish larvae resulted in reduced myeloid leukocytes in the intestine, increased intestinal goblet cells, and decreased the expression level of tnf-α (P<0.05). Overall, these results suggest that Indonesian propolis could be a potential agent to protect against inflammatory damage.

indonesian propolis inflammation cytokine lipopolysaccharide zebrafish

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


[1]  Opal, S.M. and DePalo, V.A., “Anti-inflammatory cytokines”, Chest, 117. 1167-1172. 2000.
[2]  Dinarello, C.A., “Anti-inflammatory agents: present and future”, Cell, 140. 935-950. 2010.
[3]  Meek, I.L., Van De Laar, M.A.F.J., and Vonkeman, H.E., “Non-steroidal anti-inflammatory drugs: an overview of cardiovascular risks”, Pharmaceuticals, 3. 2146-2162. 2010.
[4]  Burdock, G., “A Review of the biological properties and toxicity of bee propolis (propolis)”, Food Chem. Toxicol., 36(4). 347-363. 1998.
[5]  Sforcin, J.M., “Propolis and immune system: a review”, J. Ethnopharmacol., 113(1). 1-14. 2007.
[6]  Huang, S., Zhang, C.P., Wang, K., Li, G.Q., and Hu, F.L., “Recent advances in the chemical composition of propolis”, Molecules, 19. 19610-19632. 2014.
[7]  Syamsudin, Wiryowidagdo, S., Simanjuntak, P., and Heffen, W.L., “Chemical composition of propolis from different regions in Java and their cytotoxic activity”, Am. J. Biochem. Biotechnol., 5(4). 180-183. 2009.
[8]  Araujo, M.A.R., Liberio, S.A., Guerra, R.N.M., Ribeiro, M.N.S., and Nascimento, F.R.F., “Mechanisms of action underlying the anti-inflammatory and immunomodulatory effects of propolis: a brief review”, Rev. Bras. Farmacogn., 22(1). 208-219. 2012.
[9]  Brugman, S., “The zebrafish as a model to intestinal inflammation”. Dev. Comp. Immunol., 64. 82-92. 2016.
[10]  Westerfield, M., The zebrafish book: A guide for the laboratory use of zebrafish (Danio rerio) 4th ed., University of Oregon Press, Eugene, 2000.
[11]  Bates, J.M., Akerlund, J., Mittge, E., and Guillemin, K., “Intestinal alkaline phosphatase detoxifies lipopolysaccharide and prevents inflammation in zebrafish in response to the gut microbiota”, Cell Host Microbe, 2. 371-382. 2007.
[12]  Caruffo, M., Navarrete, N.C., Salgado, O.A., Faundez, N.B., Gajardo, M.C., Feijoo, C.G., Reyes-Jara, A., Garcia, K., and Navarrete P., “Protective yeasts control V. anguillarum pathogenicity and modulate the innate immune response of challenged zebrafish (Danio rerio) larvae”, Front. Cell. Infect. Microbiol. 6. 127. 2016.
[13]  Livak, K. and Schmittgen, T., “Analysis of relative gene expression data using real-time quantitative PCR and the 2-ddCt method”, Methods, 25. 402-408. 2001.
[14]  Thisse, C. and Thisse, B., “High-resolution in situ hybridization to whole-mount zebrafish embryos”, Nat. Protoc., 3(1). 59-69. 2008.
[15]  Cordero-Maldonado, M.L., Siverio-Mota, D., Vicet-Muro, L., Wilches-Arizábala, I.M., Esguerra, E.M., de Witte, P.A., and Crawford, A.D., “Optimization and pharmacological validation of a leukocyte migration assay in zebrafish larvae for the rapid in vivo bioactivity analysis of anti-inflammatory secondary metabolites”, PLoS ONE, 8(10). e75404. 2013.
[16]  Sullivan-Brown, J., Bisher M.E., and Burdine, R.D., “Embedding, serial sectioning and staining of zebrafish embryos using JB-4 resin”. Nat. Protoc., 6(1). 46-55. 2011.
[17]  Hedrera, M.I., Galdames, J.A., Jimenez-Reyes, M.F., Reyes, A.E., Avendaño-Herrera, R., and Romero, J., “Soybean meal induces intestinal inflammation in zebrafish larvae”, PLoS ONE, 8(7). e69983. 2013.
[18]  Yang, L.L., Wang, G.Q., Yang, L.M., Huang, Z.B., Zhang, W.Q., and Yu, L.Z., “Endotoxin molecule lipopolysaccharide-induced zebrafish inflammation model: a novel screening method for anti-inflammatory drugs”, Molecules, 19(2). 2390-2409. 2014.
[19]  Zou, J. and Secombes, C. J., “The function of fish cytokines”, Biology (Basel), 5(2). 23. 2016.
[20]  Neiva, K.G., Catalfamo, D.L., Holliday, S., Wallet, S.M., and Pileggi, R., “Propolis decreases lipopolysaccharide-induced inflammatory mediators in pulp cells and osteoclasts”, Dent. Traumatol., 30(5). 362-367. 2014.
[21]  Zhang, D.C., Shao, Y.Q., Huang, Y.Q., and Jiang, S.G., “Cloning, characterization, and expression analysis of interleukin-10 from the zebrafish (Danio rerio)”, J. Biochem. Mol. Biol., 38(5). 571-576. 2005.
[22]  Bueno-Silva, B., Kawamoto, D., Ando-Suguimoto, E.S., Alencar, S.M., Rosalen, P.L., and Mayer, M.P.A., “Brazilian red propolis attenuates inflammatory signaling cascade in lps-activated macrophages”, PLoS ONE, 10(12). e0144954. 2015.
[23]  de Oliveira, S., Reyes-Aldasoro, C.C., Candel, S., Renshaw, S.A., Mulero, V., and Calado, A., “Cxcl8 (interleukin-8) mediates neutrophil recruitment and behavior in the zebrafish inflammatory response”, J. Immunol., 190(8). 4349-4359. 2013.
[24]  Franchin, M., Colon, D.F., Castanheira, F.V.S., da Cunha, M.G., Bueno-Silva, B., Alencar, S.M., Cunha, T.M., and Rosalen, P.L., “Vestitol isolated from brazilian red propolis inhibits neutrophils migration in the inflammatory process: elucidation of the mechanism of action”, J. Nat. Prod., 79(4). 954-960. 2016.
[25]  Zapata, D.J., Rodriguez, B.J., Ramirez, M.C., Lopez, A., and Parra, J., “Escherichia coli lipopolysaccharide affects intestinal mucin secretion in weaned pigs”, Rev. Colomb. Cienc. Pecu., 28. 209-217. 2015.
[26]  Oehlers, S.H., Flores, M.V., Hall, C.J., Okuda, K.S., Sison, J.O., Crosier, K.E., and Crosier, P.S., “Chemically induced intestinal damage models in zebrafish larvae”, Zebrafish, 10(2). 184-193. 2013.
[27]  Kim, J.J. and Ho, S.B., “Intestinal goblet cells and mucins in health and disease: Recent insights and progress”. Curr. Gastroenterol. Rep., 12(5). 319-330. 2013.
[28]  Schroder, K., Hertzog, P.J., Ravasi, T., and Hume, D.A., “Interferon-gamma: an overview of signals, mechanisms and functions”, J. Leukoc. Biol., 75(2). 163-189. 2004.
[29]  Santangelo, C., Vari, R., Scazzocchio, B., Benedetto, R., Filesi, C., and Masella, R., “Polyphenols, intracellular signaling and inflammation”, Ann. Ist. Super. Sanita., 43(4). 394-405. 2007.