[1] | Adeyina, A., et al., Performance and physiological response of weaner rabbits fed hot water treated cocoa bean shell-based diet. Res J Anim Vet Sci, 2010. 5: p. 53-7. |
|
[2] | Pusat Data dan Sistem Informasi Pertanian, Outlook Kakao Komoditas Pertanian Subsektor Perkebunan. 2016, Pusat Data dan Sistem Informasi Pertanian Kementerian Pertanian. |
|
[3] | Olubamiwa, O., et al., Effect of boiling time on the utilization of cocoa bean shell in laying hen feeds. International Journal of Poultry Science, 2006. 5(12): p. 1137-1139. |
|
[4] | Nsor-Atindana, J., et al., Quantification of total polyphenolic content and antimicrobial activity of cocoa (Theobroma cacao L.) Bean Shells. Pakistan Journal of Nutrition, 2012. 11(7): p. 574. |
|
[5] | Ververis, C., et al., Cellulose, hemicelluloses, lignin and ash content of some organic materials and their suitability for use as paper pulp supplements. Bioresource Technology, 2007. 98(2): p. 296-301. |
|
[6] | Ashori, A., Nonwood fibers—A potential source of raw material in papermaking. Polymer-Plastics Technology and Engineering, 2006. 45(10): p. 1133-1136. |
|
[7] | Hammett, A., et al., Non-wood fiber as an alternative to wood fiber in Chinas pulp and paper industry. Holzforschung, 2001. 55(2): p. 219-224. |
|
[8] | Robertson, G.L., Food packaging: principles and practice. 2005: CRC press. |
|
[9] | Redgwell, R., et al., Dietary fibre in cocoa shell: characterisation of component polysaccharides. Food Chemistry, 2003. 81(1): p. 103-112. |
|
[10] | Yang, H., et al., Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel, 2007. 86(12-13): p. 1781-1788. |
|
[11] | Pelissari, F.M., P.J. do Amaral Sobral, and F.C. Menegalli, Isolation and characterization of cellulose nanofibers from banana peels. Cellulose, 2014. 21(1): p. 417-432. |
|
[12] | Turhan, K., F. Sahbaz, and A. Güner, A spectrophotometric study of hydrogen bonding in methylcellulose‐based edible films plasticized by polyethylene glycol. Journal of Food Science, 2001. 66(1): p. 59-62. |
|
[13] | Reilly, C., Metal contamination of food: its significance for food quality and human health. 2008: John Wiley & Sons. |
|
[14] | Shahid, M., et al., Behavior and impact of zirconium in the soil–plant system: plant uptake and phytotoxicity, in Reviews of Environmental Contamination and Toxicology Volume 221. 2013, Springer. p. 107-127. |
|
[15] | Nassar, M.M., Kinetic studies on thermal degradation of nonwood plants. Wood and fiber science, 2007. 17(2): p. 266-273. |
|
[16] | Laftah, W.A. and W.A.W.A. Rahaman, Chemical pulping of waste pineapple leaves fiber for kraft paper production. Journal of Materials Research and Technology, 2015. 4(3): p. 254-261. |
|
[17] | Mechi, N., et al., Preparation of paper sheet from cellulosic fibres obtained from Prunus amygdalus and Tamarisk sp. Cellulose chemistry and technologY, 2016. 7(8): p. 863-872. |
|
[18] | Martínez, R., et al., Chemical, technological and in vitro antioxidant properties of cocoa (Theobroma cacao L.) co-products. Food Research International, 2012. 49(1): p. 39-45. |
|
[19] | Faradilla, R.H.F., et al., Effect of polyethylene glycol (PEG) molecular weight and nanofillers on the properties of banana pseudostem nanocellulose films. Carbohydrate Polymers, 2018. |
|
[20] | Xiao, Z., Papermaking Process Online Measurement and Control of Paper Ash Content. Sensors & Transducers, 2014. 174(7): p. 229. |
|
[21] | Matsui, K.N., et al., Cassava bagasse-Kraft paper composites: analysis of influence of impregnation with starch acetate on tensile strength and water absorption properties. Carbohydrate Polymers, 2004. 55(3): p. 237-243. |
|