Journal of Food and Nutrition Research
ISSN (Print): 2333-1119 ISSN (Online): 2333-1240 Website: Editor-in-chief: Prabhat Kumar Mandal
Open Access
Journal Browser
Journal of Food and Nutrition Research. 2019, 7(5), 355-360
DOI: 10.12691/jfnr-7-5-4
Open AccessArticle

In Vitro Analyses of Antioxidant Activity of Food Supplements GE Kids® and GE 132+ Natural®

Nevena Todorović1, , Neda O. Đorđević1 and Snežana B. Pajović1

1Laboratory of Molecular Biology and Endocrinology, Institute of Nuclear Sciences “Vinča”, University of Belgrade, Belgrade, Serbia

Pub. Date: April 25, 2019

Cite this paper:
Nevena Todorović, Neda O. Đorđević and Snežana B. Pajović. In Vitro Analyses of Antioxidant Activity of Food Supplements GE Kids® and GE 132+ Natural®. Journal of Food and Nutrition Research. 2019; 7(5):355-360. doi: 10.12691/jfnr-7-5-4


Nutrition related research, including the studies focused on the natural dietary antioxidants are getting more and more attention. Functional foods, that contain known or unknown biologically active compounds, promote health and wellbeing beyond dietary needs. Exogenous originating reducing compounds such as vitamin C, vitamin E, carotenoids and polyphenols, play important role in many antioxidant mechanisms in living organisms. There are a great number of synthetic antioxidant products in the market, whereby tendency is to replace synthetic antioxidants by natural ones. Here we examined the antioxidant properties of GE kids® and GE 132+ natural®, food supplements designed for maintenance and improvement of immune response in children and adults, respectively. Antioxidant properties were analyzed in vitro by testing their ability to scavenge free radical species and their ferric reducing antioxidant power. GE kids® and GE 132+ natural® showed antioxidant activity against physiologically relevant hydroxyl and superoxide radical, as well as against artificial radicals 2,2-diphenyl-1-picrylhydrazyl (DPPH·) and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) (ABTS·+), commonly used for in vitro analyses of antioxidant properties. Interestingly, both food supplements showed the highest efficacy in scavenging hydroxyl radical, free radical which can be neutralized only by non‐enzymatic systems. Accordingly, anti-hydroxyl radical activity was equivalent to activity of 533.3 ± 6.1 mg of ascorbic acid (AA) per GE kids® sachet and 172.6 ± 12.3 mg of AA per GE 132+ natural® capsule. Results suggest that GE kids® and GE 132+ natural® may contribute maintaining the physiological levels of free radicals and therefore the oxido-redox balance in the organism.

food supplements antioxidant activity radical scavenging reducing power

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


[1]  Wilson, D., Nash, P., Buttar, H., Griffiths, K., Singh, R., De Meester, F., Horiuchi, R., and Takahashi, T. The Role of Food Antioxidants, Benefits of Functional Foods, and Influence of Feeding Habits on the Health of the Older Person: An Overview, Antioxidants. 6. pii: E81. 2007.
[2]  Diplock, A. T., Charleux, J. L., Crozier-Willi, G., Kok, F. J., Rice-Evans, C., Roberfroid, M., Stahl, W., and Viña-Ribes, J. Functional food science and defence against reactive oxidative species, Br. J. Nutr. 80. 77-112. 1998.
[3]  Gordon, M. H. Significance of dietary antioxidants for health, Int. J. Mol. Sci. 13. 184-199. 2012.
[4]  Andre, C., Larondelle, Y., and Evers, D. Dietary Antioxidants and Oxidative Stress from a Human and Plant Perspective: A Review, Curr. Nutr. Food Sci. 6. 2-12. 2010.
[5]  Bendich, A. Physiological Role of Antioxidants in the Immune System, J. Dairy Sci. 76. 2789-2794. 1993.
[6]  Hajian, S. Positive effect of antioxidants on immune system. Immonopathologia Persa. 1. 1-2. 2015.
[7]  Brambilla, D., Mancuso, C., Scuderi, M. R., Bosco, P., Cantarella, G., Lempereur, L., Di Benedetto, G., Pezzino, S., and Bernardini, R. The role of antioxidant supplement in immune system, neoplastic, and neurodegenerative disorders: A point of view for an assessment of the risk/benefit profile, Nutr. J. 7. 1-9. 2008.
[8]  Manach, C., Scalbert, A., Morand, C., Remesy, C. and Jimenez, L. Polyphenols: food sources and bioavailability, Am.J Clin Nutr. 79. 727-747. 2004.
[9]  De Benedictis, F. M., and Bush, A. Recurrent respiratory tract infections in children, BMJ. 362:k2698. 2018.
[10]  Li, Y., Jiang, B., Zhang, T., Mu, W., and Liu, J. Antioxidant and free radical-scavenging activities of chickpea protein hydrolysate (CPH), Food Chem. 106. 444-450. 2008.
[11]  Liu, F., Ooi, V. E. C., and Chang, S. T. Free radical scavenging activities of mushroom polysaccharide extracts, Life Sci. 60. 763-771. 1997.
[12]  Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., and Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay, Free Radic. Biol. Med. 26.1231-1237. 1999.
[13]  Blois, M. Antioxidant determinations by the use of a stable free radical, Nature, 181. 1199-1200. 1958.
[14]  Benzie, I. F. F., and Strain, J. J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of ‘“Antioxidant Power”’: The FRAP Assay, Anal. Biochem. 299. 70-76. 1996.
[15]  Lipinski, B. Hydroxyl radical and its scavengers in health and disease, Oxid. Med. Cell. Longev. 2011:809696. 2011.
[16]  Matros, A., Peshev, D., Peukert, M., Mock, H. P., and Van Den Ende, W. Sugars as hydroxyl radical scavengers: Proof-of-concept by studying the fate of sucralose in Arabidopsis, Plant J. 82. 822-839. 2015.
[17]  Kofuji, K., Aoki, A., Tsubaki, K., Konishi, M., Isobe, T., and Murata, Y. Antioxidant Activity of β –Glucan, ISRN Pharm. 2012. 1-5. 2012.
[18]  Hamdo, H. H., Khayata, W., and Al-Assaf, Z. Synergistic effect of combined some natural and synthetic antioxidants to increase oxidative stability using DPPH test, Int. J. ChemTech Res. 6. 2539-2545. 2014.
[19]  Zargar, S., Al-Majed, A. R. A., and Wani, T. A. Potentiating and synergistic effect of grapefruit juice on the antioxidant and anti-inflammatory activity of aripiprazole against hydrogen peroxide induced oxidative stress in mice, BMC Complement. Altern. Med. 18. 1-8. 2018.
[20]  Hajimehdipoor, H., Shahrestani, R., and Shekarchi, M. Investigating the synergistic antioxidant effects of some flavonoid and phenolic compounds, Res. J. Pharmacogn. 1. 35-40. 2014.
[21]  Cör, D., Knez, Ž., and Hrnčič, M. K. 2018. Antitumour, antimicrobial, antioxidant and antiacetylcholinesterase effect of Ganoderma Lucidum terpenoids and polysaccharides: A review, Molecules. 23. 1-21.
[22]  Gulcin, I. Antioxidant activity of food constituents: an overview, Arch Toxicol. 86. 345-391. 2012.
[23]  Kotora, P., Šeršěn, F., Filo, J., Loos, D., Gregáň, J., and Gregáň, F. The scavenging of DPPH, galvinoxyl and ABTS radicals by imine analogs of resveratrol, Molecules. 21. E127. 2016.
[24]  Račková, L., Košťǎlová, D., Bezáková, L., Fialová, S., Bauerová, K., Tóth, J., Štefek, M., Vanko, M., Holkovǎ, I., and Obložnský, M. Comparative study of two natural antioxidants, curcumin and Curcuma longa extract, J. Food Nutr. Res. 48. 148-152. 2009.
[25]  Ligen, Z., Yuanfeng, W., Yuke, S., Lei, Z., Mupunga, J., Jianwei, M., and Shiwang, L. Broccoli seed extracts but not sulforaphane have strong free radical scavenging activities, Int. J. Food Sci. Technol. 52. 2374-2381. 2017.
[26]  Pulido, R., Bravo, L., and Saura-Calixto, F. Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay, J. Agric. Food Chem. 48. 3396-3402. 2000.
[27]  Chuanphongpanich, S., Phanichphant, S., Bhuddasukh, D., Suttajit, M., and Sirithunyalug, B. Bioactive glucosinolates and antioxidant properties of broccoli seeds cultivated in Thailand, Songklanakarin J. Sci. Technol. 28. 55-61. 2006.