Journal of Food and Nutrition Research
ISSN (Print): 2333-1119 ISSN (Online): 2333-1240 Website: http://www.sciepub.com/journal/jfnr Editor-in-chief: Prabhat Kumar Mandal
Open Access
Journal Browser
Go
Journal of Food and Nutrition Research. 2019, 7(5), 342-346
DOI: 10.12691/jfnr-7-5-2
Open AccessArticle

Combined Effect of Modified Atmosphere Package and Short-Wave Ultraviolet Does Not Affect Proteus mirabilis Growth on Rainbow Trout Fillets (Oncorhynchus mykiss)

Bruna Rodrigues1, Thiago Alvares2, Marion Costa1, 3, Guilherme Sampaio1, César Aquiles Lázaro De La Torre4, Pedro Panzenhagen1, Eliane Mársico1, Sérgio Mano1 and Carlos Conte-Junior1, 5,

1Department of Food Technology, Faculty of Veterinary, Fluminense Federal University, Niterói, Brazil

2Nucleus of Basic Nutrition and Dietetics, Federal University of Rio de Janeiro, Macaé, Brazil

3Department of Preventive Veterinary Medicine, School of Veterinary Medicine and Animal Husbandry, Federal University of Bahia, Salvador, Brazil

4Department of Animal Health and Public Health, Faculty of Veterinary, National University of San Marcos, Lima, Perú

5Food Science Program, Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil;National Institute for Health Quality Control, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil

Pub. Date: April 20, 2019

Cite this paper:
Bruna Rodrigues, Thiago Alvares, Marion Costa, Guilherme Sampaio, César Aquiles Lázaro De La Torre, Pedro Panzenhagen, Eliane Mársico, Sérgio Mano and Carlos Conte-Junior. Combined Effect of Modified Atmosphere Package and Short-Wave Ultraviolet Does Not Affect Proteus mirabilis Growth on Rainbow Trout Fillets (Oncorhynchus mykiss). Journal of Food and Nutrition Research. 2019; 7(5):342-346. doi: 10.12691/jfnr-7-5-2

Abstract

The current study investigated the effectiveness of short-wave ultraviolet (UV-C) radiation on rainbow trout fillets inoculated with Proteus mirabilis when combined with Modified Atmosphere Packaging technology (MAP). Rainbow trout were inoculated, packaged under different ratios of CO2 and N2 gases and subjected to UV-C radiation. Our study model demonstrated that at least 0.1001 J/cm2 is necessary to significantly reduce Proteus mirabilis loads (reduction of 1.8 log CFU.g-1) in trout fillet packaged without CO2 gas barrier. The rainbow trout fillet packaged with CO2 gas barrier had significantly reduced Proteus mirabilis load but not when associated with UV-C radiation exposure. The combined effect of UV-C and MAP at different radiation doses and ratios of CO2 and N2 gas did not contribute to Proteus mirabilis growth reduction. Overall, the use of MAP significantly reduces the penetration and effect of UV-C radiation when compared to the unpackaged control. The combination of these two technologies of food preservation does not seem to be a suitable model to extend the shelf life of packaged fish fillet.

Keywords:
freshwater fish UV-C radiation modified atmosphere package Proteus mirabilis shelf life

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Connor, W.E. “Importance of n− 3 fatty acids in health and disease–”, Am J Clin Nutr, 71 (1). 171S-175S. 2000.
 
[2]  Coloso, R., King, K., Fletcher, J., Weis, P., Werner, A., and Ferraris, R. “Dietary P regulates phosphate transporter expression, phosphatase activity, and effluent P partitioning in trout culture” , J Comp Physiol B, 173 (6). 519-530. 2003.
 
[3]  Sidhu, K.S. “Health benefits and potential risks related to consumption of fish or fish oil”, Regul Toxicol Pharmacol, 38 (3). 336-344. 2003.
 
[4]  Gram, L. and Huss, H.H. “Microbiological spoilage of fish and fish products”, Int J Food Microbiol, 33 (1). 121-137. 1996.
 
[5]  Gram, L. and Dalgaard, P. “Fish spoilage bacteria–problems and solutions”, Curr Opin Biotechnol, 13 (3). 262-266. 2002.
 
[6]  Rodrigues, B.L., dos Santos, L.R., Mársico, E.T., Camarinha, C.C., Mano, S.B., and Junior, C.A.C. “Qualidade físico-química do pescado utilizado na elaboração de sushis e sashimis de atum e salmão comercializados no município do Rio de Janeiro, Brasil”, Semina Ciênc Agrár, 33 (5). 1847–1854. 2012.
 
[7]  Rodrigues, B.L., Alvares, T.S., Costa, M. da., Sampaio, G., Lázaro De La Torre, C., Mársico, E.T., and Conte Júnior, C.A. “Concentration of biogenic amines in rainbow trout (Oncorhynchus mykiss) preserved in ice and its relationship with physicochemical parameters of quality” , J Aquac Res Dev, 4 (3). 4. 2013.
 
[8]  Chun, H., Kim, J., Lee, B., Yu, D., and Song, K. “Effect of UV-C irradiation on the inactivation of inoculated pathogens and quality of chicken breasts during storage” , Food Control, 21 (3). 276-280. 2010.
 
[9]  Haughton, P., Lyng, J., Cronin, D., Morgan, D., Fanning, S., and Whyte, P. “Efficacy of UV light treatment for the microbiological decontamination of chicken, associated packaging, and contact surfaces”, J Food Prot, 74 (4). 565-572. 2011.
 
[10]  Bintsis, T., Litopoulou-Tzanetaki, E., and Robinson, R.K. “Existing and potential applications of ultraviolet light in the food industry - a critical review”, J Sci Food Agric, 80 (6). 637-645. May 2000.
 
[11]  Food and Drug Administration, H. “Irradiation in the production, processing and handling of food. Final rule”, Fed Regist, 73 (164). 49593. 2008.
 
[12]  Bottino, F.D.O., Rodrigues, B.L., de Nunes Ribeiro, J.D., Lázaro, C.A. de la T., and Conte‐Junior, C.A. “Influence of UV‐C Radiation on Shelf Life of Vacuum Package Tambacu (Colossoma macropomum× Piaractus mesopotamicus) Fillets”, J Food Process Preserv, 41 (4). e13003. 2017.
 
[13]  Chun, H., Kim, J., Chung, K., Won, M., and Song, K.B. “Inactivation kinetics of Listeria monocytogenes, Salmonella enterica serovar Typhimurium, and Campylobacter jejuni in ready-to-eat sliced ham using UV-C irradiation”, Meat Sci, 83 (4). 599-603. 2009.
 
[14]  Gimenez, B., Roncales, P., and Beltran, J.A. “Modified atmosphere packaging of filleted rainbow trout” , J Sci Food Agric, 82 (10). 1154-1159. 2002.
 
[15]  Monteiro, M.L.G., Mársico, E.T., Mano, S.B., Teixeira, C.E., Canto, A.C.V. da C.S., de Carvalho Vital, H., and Conte‐Júnior, C.A. “Influence of good manufacturing practices on the shelf life of refrigerated fillets of tilapia (Oreochromis niloticus) packed in modified atmosphere and gamma‐irradiated”, Food Sci Nutr, 1 (4). 298-306. 2013.
 
[16]  Sastry, S.K., Datta, A.K., and Worobo, R.W. “Ultraviolet light”, J Food Sci, 65 90-92. 2000.
 
[17]  Unluturk, S., Atılgan, M.R., Baysal, A.H., and Tarı, C. “Use of UV-C radiation as a non-thermal process for liquid egg products (LEP)”, J Food Eng, 85 (4). 561-568. 2008.
 
[18]  Chun, H.-H., Kim, J.-Y., and Song, K.B. “Inactivation of foodborne pathogens in ready-to-eat salad using UV-C irradiation”, Food Sci Biotechnol, 19 (2). 547-551. 2010.
 
[19]  Keklik, N., Demirci, A., and Puri, V. “Decontamination of unpackaged and vacuum-packaged boneless chicken breast with pulsed ultraviolet light”, Poult Sci, 89 (3). 570-581. 2010.
 
[20]  Sommers, C.H., Sites, J.E., and Musgrove, M. “Ultraviolet light (254 nm) inactivation of pathogens on foods and stainless steel surfaces”, J Food Saf, 30 (2). 470-479. 2010.
 
[21]  Ruiz-Capillas, C. and Jiménez-Colmenero, F. “Biogenic amines in seafood products”, Saf Anal Foods Anim Orig, 743. 2010.
 
[22]  Houicher, A., Kuley, E., Bendeddouche, B., and Özogul, F. “Histamine and tyramine production by bacteria isolated from spoiled sardine (Sardina pilchardus)”, Afr J Biotechnol, 12 (21). 2013.
 
[23]  Sant’Ana, A.S., Barbosa, M.S., Destro, M.T., Landgraf, M., and Franco, B.D. “Growth potential of Salmonella spp. and Listeria monocytogenes in nine types of ready-to-eat vegetables stored at variable temperature conditions during shelf-life”, Int J Food Microbiol, 157 (1). 52-58. 2012.
 
[24]  Isohanni, P. and Lyhs, U. “Use of ultraviolet irradiation to reduce Campylobacter jejuni on broiler meat” , Poult Sci, 88 (3). 661-668. 2009.
 
[25]  Boziaris, I.S, Seafood processing: technology, quality and safety, John Wiley & Sons, Chichester, 2014, 488p.
 
[26]  Provincial, L., Guillén, E., Gil, M., Alonso, V., Roncalés, P., and Beltrán, J.A. “Survival of Listeria monocytogenes and Salmonella Enteritidis in sea bream (Sparus aurata) fillets packaged under enriched CO2 modified atmospheres” , Int J Food Microbiol, 162 (3). 213-219. 2013.
 
[27]  Bouletis, A.D., Arvanitoyannis, I.S., Hadjichristodoulou, C., Neofitou, C., Sakkomitrou, M., and Kolokythopoulou, F. “The effect of modified atmosphere packaging on the microbiological, physical, chemical and sensory characteristics of broadtail squid (I llex coindetii)”, Int J Food Sci Technol, 49 (2). 329-336. 2014.
 
[28]  Yew, C.C., Bakar, F.A., Rahman, R.A., Bakar, J., Zaman, M.Z., Velu, S., and Shariat, M. “Effects of modified atmosphere packaging with various carbon dioxide composition on biogenic amines formation in Indian mackerel (Rastrelliger kanagurta) stored at 5±1 C”, Packag Technol Sci, 27 (3). 249-254. 2014.
 
[29]  Ozer, N.P. and Demirci, A. “Inactivation of Escherichia coli O157: H7 and Listeria monocytogenes inoculated on raw salmon fillets by pulsed UV‐light treatment”, Int J Food Sci Technol, 41 (4). 354-360. 2006.
 
[30]  McDonald, K.F., Curry, R.D., Clevenger, T.E., Unklesbay, K., Eisenstark, A., Golden, J., and Morgan, R.D. “A comparison of pulsed and continuous ultraviolet light sources for the decontamination of surfaces”, IEEE Trans Plasma Sci, 28 (5). 1581-1587. 2000.
 
[31]  Guerrero-Beltr· n, J. and Barbosa-C· novas, G. “Advantages and limitations on processing foods by UV light”, Food Sci Technol Int, 10 (3). 137-147. 2004.
 
[32]  Zuta, P., Simpson, B., Zhao, X., and Leclerc, L. “The effect of α-tocopherol on the oxidation of mackerel oil”, Food Chem, 100 (2). 800-807. 2007.
 
[33]  Warriner, K., Rysstad, G., Murden, A., Rumsby, P., Thomas, D., and Waites, W. “Inactivation of Bacillus subtilis spores on packaging surfaces by uv excimer laser irradiation”, J Appl Microbiol, 88 (4). 678-685. 2000.
 
[34]  Woodling, S.E. and Moraru, C.I. “Influence of surface topography on the effectiveness of pulsed light treatment for the inactivation of Listeria innocua on stainless‐steel surfaces” , J Food Sci, 70 (7). m345-m351. 2005.
 
[35]  Ringus, D.L. and Moraru, C.I. “Pulsed Ligh inactivation of Listeria innocua on food packaging materials of different surface roughness and reflectivity”, J Food Eng, 114 (3). 331-337. 2013.
 
[36]  Durlu-Özkaya, F., Ayhan, K., and Vural, N. “Biogenic amines produced by Enterobacteriaceae isolated from meat products”, Meat Sci, 58 (2). 163-166. Jun 2001.
 
[37]  Unluturk, S., Atılgan, M.R., Baysal, A.H., and Unluturk, M.S. “Modeling inactivation kinetics of liquid egg white exposed to UV-C irradiation”, Int J Food Microbiol, 142 (3). 341-347. 2010.
 
[38]  Stoops, J., Jansen, M., Claes, J., and Van Campenhout, L. “Decontamination of powdery and granular foods using Continuous Wave UV radiation in a dynamic process”, J Food Eng, 119 (2). 254-259. 2013.
 
[39]  Blatchley, E.R., 3rd., Dumoutier, N., Halaby, T.N., Levi, Y., and Laine, J.M. “Bacterial responses to ultraviolet irradiation” , Water Sci Technol, 43 (10). 179-186. 2001.