Journal of Food and Nutrition Research
ISSN (Print): 2333-1119 ISSN (Online): 2333-1240 Website: http://www.sciepub.com/journal/jfnr Editor-in-chief: Prabhat Kumar Mandal
Open Access
Journal Browser
Go
Journal of Food and Nutrition Research. 2019, 7(3), 183-186
DOI: 10.12691/jfnr-7-3-1
Open AccessArticle

Regulatory Activities from Conjugated Linoleic Acid of p38 Protein in Melanoma Cells

Hyun Woo Kang1, and Sang Jae Kwak1

1Department of Korean Food & Culinary Arts, Youngsan University, Busan, Korea

Pub. Date: March 02, 2019

Cite this paper:
Hyun Woo Kang and Sang Jae Kwak. Regulatory Activities from Conjugated Linoleic Acid of p38 Protein in Melanoma Cells. Journal of Food and Nutrition Research. 2019; 7(3):183-186. doi: 10.12691/jfnr-7-3-1

Abstract

This study investigated the activities of trans10,cis12-conjugated linoleic acid (CLA) were then passed through the p38 in in vitro model. Cell viability, apoptosis, expression of p38 was evaluated using B16 melanoma cells. Our result showed that the trans10,cis12-CLA increased cell apoptosis in melanoma cells. In addition, CLA stimulated the expression of p38 and phosphorylation p38 (p-p38) level using western blotting. The p38 was presumed that the CLA were involved in regulation of apoptosis-related pathway in the melanoma cells signaling pathway. Considering the results obtained, the present study finding that the regulatory activities of trans10,cis12-CLA may be important as a therapeutic target in ameliorating melanoma cells mediated cancer or/and tumor on in vitro model.

Keywords:
conjugated linoleic acid p38 melanoma cells cell apoptosis

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Hoang, M.T., and Eichenfield, L. F., “The rising incidence of melanoma in children and afolescents”, Dermatology Nursing 12(3), 192-193. 2000.
 
[2]  Duan, Y., Zhang, H., Xu, F., Xie, B., Yang, X., Wang, Y., and Yan, Y., “Inhibition effext of procyanidins from lotus seedpod on mouse B16 melanoma in vivo and in vitro Food Chemistry 122(1), 84-91. 2010.
 
[3]  Navarini, A.L.F., Chiaradia, L.D., Mascarello, A., Fritzen, M., Nunes, R.J., Yunes, R.A., Creczynski-Pasa, T.B., “Hydroxychalcones induce apoptosis in B16-F10 melanoma cells via GSH and ATP depletion”, European Journal of Medicinal Chemistry 44(4), 1630-1637. 2009.
 
[4]  Legha, S.S., Ring, S., Eton, O., Bedikian, A., Buzaid, A.C., Plager, C., and Papadopoulos, N., “Development of a biochemotherapy regimen with concurrent administration of cisplatin, vinblastine, dacarbazine, interferon alfa, and interleukin-2 for patients with metastatic melanoma”, Journal of Clinical Oncology 16(5), 1752-1759. 1998.
 
[5]  Sun, W., and Schuchter, L.M., “Metastatic melanoma”, Current Treatment Options in Oncology 2(3), 183-191. 2001.
 
[6]  Nebreda, A.R., and Porras, A., “P38 MAP kinases: beyond the stress response”, Trends Biochemical Sciences 25(6), 257-260. 2000.
 
[7]  Seger, R., and Krebs, E.G., “The MAPK signaling cascade”, The FASEB Journal 9(9), 726-735. 1995.
 
[8]  Cohen, P., “The search for physiological substrates of MAP and SAP kinases in mammalian cells” Trends in Cell Biology 7(9), 353-361. 1997.
 
[9]  Singh, S.K., Sarkar, C., Mallick, S., Saha, B., Bera, R., and Bhadra, R., “Human placental lipid induces melanogenesis through p38 MAPK in B16F10 mouse melanoma”, Pigment Cell and Melanoma Research 18(2), 113-121. 2005.
 
[10]  Hirata, N., Naruto, S., Ohguchi, K., Akao, Y., Nozawa, Y., Iinuma, M., and Matsuda, H., “Mechanism of the melanogenesis stimulation activity of (-)-cubebin in murine B16 melanoma cells”, Bioorganic and Medicinal Chemistry 15(14), 4897-4902. 2007.
 
[11]  Pariza, M.W., and Hargraves, W.A., “A beef-derived mutagenesis modulator inhibits initiation of mouse epidermal tumors by 7,12-dimethylbenz[a]anthracene”, Carcinogenesis 6(4), 591-593. 1985.
 
[12]  Park, Y.H., Albright, K.J., Storkson, J.M., Liu, W., and Pariza, M.W., “Effects of dietary conjugated linoleic acid (CLA) on spontaneously hypertensive rats”, Journal of Functional Food 2(1), 54-59. 2010.
 
[13]  Seçkin, A.K., Gursoy, O., Kinik, O., and Akbulut, N., “Conjugated linoleic acid (CLA) concentration, fatty acid composition and cholesterol content of some Turkish dairy products”, LWT - Food Science and Technology 38(8), 909-915. 2005.
 
[14]  Park, H.G, Heo, W., Kim, S.B., Kim, H.S., Bae, G.S., Chung, S.H., Seo, H.C., and Kim, Y.J., “Production of conjugated linoleic acid (CLA) by Bifidobacterium breve LMC520 and its compatibility with CLA-producing rumen bacteria”, Journal of Agricultural and Food Chemistry 59(3), 984-988. 2011.
 
[15]  Evans, M.E., Brown, J.M., and McIntosh, M.K., “Isomer-specific effects of conjugated linoleic acid (CLA) on adiposityand lipid metabolism”, Journal of Nutritional Biochemistry 13(9), 508-516. 2002.
 
[16]  Shen, W., Chuang, C.C., Martinez, K., Reid, T., Brown, J.M., Xi, L., Hixson, L., Hopkins, R., Starnes, J., and McIntosh, M., “Conjugated linoleic acid reduces adiposity and increases markers of browning and inflammation in white adipose tissue of mice”, Journal of Lipid Research 54(4), 909-922. 2013.
 
[17]  Chung, S.K., Brown, J.M., Sandberg, M.B., and McIntosh, M., “Trans-10, cis-12 CLA increases adipocyte lipolysis and alters lipid droplet-associated proteins: role of mTOR and ERK signaling”, Journal of Lipid Research 46(5), 885-895. 2005.
 
[18]  Park, Y.H., and Pariza, M.W., “Mechanisms of body fat modulation by conjugated linoleic acid (CLA)”, Food Research International 40(3), 311-323. 2007.
 
[19]  Kelley, N.S., Hubbard, N.E., and Erickson, K.L., “Conjugated linoleic acid isomers and cancer”, The Journal of Nutrition 137(12), 2599-2607. 2007.
 
[20]  Park, Y.H., “Conjugated linoleic acid (CLA): Good or bad trans fat?”, Journal of Food Composition and Analysis 22S, S4-S12. 2009.
 
[21]  Ip, C., Scimeca, J.A., and Thompson, H.J., “Conjugated linoleic acid: A powerful anticarcinogen from animal fat sources” Cancer 74, 1050-1054. 1994.
 
[22]  Pariza, M.W., Park, Y.H., Cook, M.E., “The biologically active isomers of conjugated linoleic acid”, Progress in Lipid Research 40(4), 283-298. 2001.
 
[23]  Hur, S.J., Ye, B.W., Lee, J.L., Ha, Y.L., Park, G.B., and Joo, S.T., “Effects of conjugated linoleic acid on color and lipid oxidation of beef patties during cold storage”, Meat Science 66(4), 771-775. 2004.
 
[24]  Schramek, H., Sorokin, A., Watson, R.D., and Dunn, M.J., “Differential long-term regulation of MEK and of p42 MAPK in rat glomerular mesangial cells”, American Journal of Physiology 270(1 Pt 1), C40-48. 1996.
 
[25]  Morisset, J., Aliaga, J.C., Calvo, E.L., Bourassa, J., and Rivard, N., “Expression and modulation of p42/p44 MAPKs and cell cycle regulatory proteins in rat pancreas regeneration”, American Journal of Physiology 277(5 Pt 1), G953-959. 1999.
 
[26]  Zhang, W., and Liu, H.T., “MAPK signal pathways in the regulation of cell proliferation in mammalian cells”, Cell Research 12(1), 9-18. 2002.
 
[27]  Yoo, M.S., Shin, J.S., Choi, H.E., Cho, Y.W., Bang, M.H., Baek, N,I., and Lee, K.T., “Fucosterol isolated from Undaria pinnatifida inhibits lipopolysaccharide-induced production of nitric oxide and pro-inflammatory cytokines via the inactivation of nuclear factor-κB and p38 mitogen-activated protein kinase in RAW264.7 macrophages”, Food Chemistry 135(3), 967-975. 2012.
 
[28]  Lee, J.H., Tachibana, H., Morinaga, Y., Fujimura, Y., and Yamada, K., “Modulation of proliferation and differentiation of C2C12 skeletal muscle cells by fatty acids”, Life Sciences 84(13-14), 415-420. 2009.
 
[29]  Ye, Y., Chu, J.H., Wang, H., Xu, H., Chou, G.X., Leung, A.K.M., Fong, W.F., and Yu, Z.L., “Involvement of p38 MAPK signaling pathway in the anti-melanogenic effect of San-bai-tang, a Chinese herbal formula, in B16 cells”, Journal of Ethnopharmacology 132(2), 533-535. 2010.
 
[30]  Huang, Y.C., Liu, K.C., Chiou, Y.L., Yang, C.H., Chen, T.H., Li, T.T., and Liu, L.L., “Fenofibrate suppresses melanogenesis in B16-F10 melanoma cells via activation of the p38 mitogen-activated protein kinase pathway”, Chemico-Biological Interactions 205(3), 157-164. 2013.