Journal of Food and Nutrition Research
ISSN (Print): 2333-1119 ISSN (Online): 2333-1240 Website: Editor-in-chief: Prabhat Kumar Mandal
Open Access
Journal Browser
Journal of Food and Nutrition Research. 2019, 7(2), 105-113
DOI: 10.12691/jfnr-7-2-2
Open AccessArticle

In vitro Assessment of the Potential Antioxidant and Antidiabetic Properties of Edible Parts of Chrysophyllum albidum Fruit Extracts

Ibrahim H. O.1, 2, , Osilesi O.1, Adebawo O. O.3, Onajobi F. D.1, Muhammad L. B.2 and Karigidi K. O.4

1Department of Biochemistry, Babcock University, Ilishan-Remo, Ogun State, Nigeria

2Department of Science Laboratory Technology, Federal Polytechnic, Offa, Kwara State, Nigeria

3Department of Biochemistry, Olabisi Onabanjo University, Ikenne Campus, Ikenne, Ogun State, Nigeria

4Department of Chemical Sciences, Ondo State University of Science and Technology, Okitipupa, Nigeria

Pub. Date: February 06, 2019

Cite this paper:
Ibrahim H. O., Osilesi O., Adebawo O. O., Onajobi F. D., Muhammad L. B. and Karigidi K. O.. In vitro Assessment of the Potential Antioxidant and Antidiabetic Properties of Edible Parts of Chrysophyllum albidum Fruit Extracts. Journal of Food and Nutrition Research. 2019; 7(2):105-113. doi: 10.12691/jfnr-7-2-2


Chrysophyllum albidum (Linn) belongs to Sapotaceae family and commonly called African star apple. It is traditionally used for the treatment of various ailments. This study aimed at investigating in vitro antidiabetic and antioxidant properties of three edible parts of Chrysophyllum albidum fruit extracts. Lyophilized C. albidum fruit pulp, skin and seed shell pericarp powders were extracted using aqueous and methanol as solvents. In vitro antioxidant (2,2-diphenyl-1-picrylhydrazyl: DPPH, Ferrous Ion chelating, Antilipid peroxidation, Hydroxyl radical and Hydrogen peroxide scavenging assay as well as estimation of total phenolic, flavonoid and antioxidant contents) assay and antidiabetic (α-amylase and α-glucosidase inhibitory assay) activities of extracts were evaluated. The study revealed that methanol skin extract of C. albidum fruit contained the highest levels of total phenolics (19.0 ± 0.16mg GAE/g dry weight), flavonoids (41.27 ± mgQE/g dry weight) and antioxidant (98.51 ± 0.10mg AAE/g dry weight) and exhibited comparable scavenging property with standards using DPPH, deoxyribose and hydrogen peroxide as substrates. Significant α-amylase (86.45 ± 0.97) and α-glucosidase (85.07 ± 0.71) inhibitory activities were also observed in methanol skin extract of C. albidum fruit, which was comparable with acarbose standard drug -99.04 ± 0.04 and 98.99 ± 0.05 respectively. Results demonstrate the antidiabetic and antioxidant potential of methanol skin extract of C. albidum fruit and indicate that C. albidum fruit skin could have therapeutic value in diabetes and the related condition of oxidative stress. Hence, further study by in vivo model would be required for the plant’s potential in the management and/or prevention of diabetes.

Chrysophyllum albidum fruit skin lyophilized antidiabetic antioxidant

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


[1]  World Health Organization, WHO (2012). Diabetes. Downloaded from topics/diabetes_mellitus/en/ on 18/9/2012.
[2]  World Health Organization, WHO (2004). Diabetes action now: An initiative of the World Health Organization and International Diabetes Federation. WHO Publication, Switzerland.
[3]  Yajnik, C.S. (2001). The insulin resistance epidemic in India: fetal origins, later lifestyle, or both? Nutrition Reviews, 59: 1-9.
[4]  Mullarkey, C., Edelstein, D., Brownlee, L. (1990). Free radical generation by early glycationproducts: a mechanism for accelerated atherogenesis in diabetes, Biochem. Biophys. Res. Comm., 173: 932-939.
[5]  Aragno, M., Tamagno, V., Gato, E., Brignardello, S, et al. (1999). Dehydroepiandrosterone protects tissues of streptozotocin-treated rats against oxidative stress. Free Radical Biol. Med., 26 (11/12):1467-1474.
[6]  Moussa, S. A. (2008). Oxidative stress in diabetes mellitus. Romanian J. Biophys., 18 (3): 225-236.
[7]  Jo, S. H., Ha, K. S., Moon, K. S., Lee, O. H., Jang, H. D. and Kwon, Y. I. (2011). In vitro and in vivo anti-hyperglycemic effects of omija (Schizandra chinensis) Fruit. International Journal of Molecular Sciences, 12(2): 1359-1370.
[8]  Wongsa, P., Chaiwarit, J. and Zamaludien, A. (2012). In vitro screening of phenolic compounds, potential inhibition against a-amylase and a-glucosidase of culinary herbs in Thailand. Food Chemistry, 131(3): 964-971.
[9]  Alexander, R. and Maltodextrins, R. (1992). Production, properties and applications.In: Schenk F, Hebeda R (ed.) Starch hydrolysis products; worldwide technology: production and applications, New York, p. 62-122.
[10]  Kwon, Y.-I., Vattem, D. A. and Shetty, K. (2006). Evaluation of clonal herbs of Lamiaceae species for management of diabetes and hypertension. Asian Pacific Journal of Clinical Nutrition, 15(1): 107-118.
[11]  Dineshkumar, B; Mitra, A; and Mahadevappa, M. (2010). Antidiabetic and hypolipidemic effects of mahanimbine (carbazole alkaloid) from Murraya koenigii (rutaceae) leaves. International Journal of Phytomedicine, 2: 22-30.
[12]  Derek, L.R., (2001). Current therapeutics algorithms for type 2 diabetes. Diabetes, 4, 38-49.
[13]  Cheng, A.Y.Y. and Fantus, I.G. (2005). Oral antihyperglycemic therapy for type 2 diabetes mellitus. Canadian Medicinal Association Journal, 172(2): 213-226.
[14]  Sunil, K., Rashmi, K. and Kumar, D. (2010). Evaluation of anti diabetic activity of Euphorbia hirta Linn. in streptozotocin induced diabetic mice. Indian Journal of Natural Products and Resources, 1: 200-203.
[15]  Dalziel, J.M. (1937). The Useful plant of work Tropical Africa, London: Crown Agents for the colonies, 524.
[16]  Amusa, N.A. Ashaye, O.A. and Oladapo, M.O. (2003). Biodeterioration of African Star Apple (Chrysophyllum albidum) in Storage and the Effect on its Food value. African Journal of Biotechnology, 2, 56-59.
[17]  Duyilemi, O.P., and Lawal, I.O. (2009). Antibacterial activity and Phytochemical screening of Chrysophyllum albidum leaves. Asian Journal of Food and Agrochemical Industry, Special Issue, 75-79.
[18]  Okoli, B .J. and Okere, O. S. (2010). Antimicrobial Activity of the Phytochemical Constituents of Chrysophyllum albidum G. Don_Holl. (African star apple) Plantation Journal of Research in National Development, 8 (1), 1-8.
[19]  Adebayo, A.H., Abolaji, A.O., Opata, T.K. and Adegbenro, I.K. (2010). Effects of Ethanolic leaf extract of Chrysophyllum albidum G. on Biochemical and Haematological Parameters of Albino Wistar Rats. African Journal of Biotechnology, 9(14), 2145-2150.
[20]  Adebayo, A.H., Abolaji, A.O. and Kela, R. (2011a). Hepatoprotective Activity of Chrysophyllum albidum against Carbon tetrachloride Induced Hepatic damage in rats. Canadian Journal of Pure and Applied Sciences, 5(3), 1597-1602.
[21]  Adebayo, A.H., Abolaji, A.O., Kela, R., Ayepola, O.O., Olorunfemi, T.B. and Taiwo, O.S. (2011b). Antioxidant Activities of the Leaves of Chrysophyllum albidum. Pakistan Journal of Pharmaceutical Science, 24 (4), 545-551.
[22]  Kamba, A. S. and Hassan, L .G. (2011). Phytochemical screening and antimicrobial activities of African star apple (Chrysopyllum albidum) leaves, stem against some pathogenic microorganisms. International Journal of Pharmaceutical Frontier Research, 1(2), 119-129.
[23]  Idowu, T. O., Onawunmi, G. O., Ogundaini, A. O. and Adesanya, S. A. (2003). Antimicrobial constituents of Chrysophyllum albidum seed cotyledons. Nigerian Journal of Natural Products and Medicine, 7:33-36.
[24]  Olorunnisola, D. S., Amao, I. S., Ehigie, D. O. and Ajayi, Z. A. F. (2008). Antihyperglycernic and hypolipidemic effect of ethanolic extract of Chrysophyllum albidum seed cotyledon in alloxan induced-diabetic rats. Research Journal of Applied Science, 3, 123-127.
[25]  Onyeka, C. A., Aligwekwe, A. U., Olawuyi, T. S., Nwakanma, A. A., Kalu, E. C. and Oyeyemi, A. W. (2012). Antifertility effects of ethanol root bark extract of Chrysophyllum albidum in male albino rats. International Journal of Applied Research in Natural Products, 5 (1), 12-17.
[26]  Adewoye, E. O., Salami, A. T. and Taiwo, V. O. (2010). Anti-plasmodial and toxicological effects of methanolic extract of Chrysophyllum albidum in albino mice. J. Physiol and Pathphysiology, 1(1): 1-9.
[27]  Ibrahim, H. O., Osilesi, O., Adebawo, O. O., Onajobi, F. D., Karigidi, K. O. and Muhammad, L. B. (2017). Nutrient compositions and phytochemical contents of edible parts of Chrysophyllum albidum fruit. Journal of Nutrition and Food Sciences-OMICS International, 7 (2), 1-9.
[28]  Orwa, C., Mutua, A., Kindt, R., Jamnadass, R., Simons, A. (2009). Agroforestree Database: A tree reference and selection guide version 4.0. albidum.
[29]  Ncube, N. S., Afolayan, A. J. and Okoh, A. I. (2008). Assessment techniques of antimicrobial properties of natural compounds of plant origin: Current methods and future trends. African Journal of Biotechnology, 7 (12), 1797-1806.
[30]  Singleton, V. L. and Rossi, J. A. Jr. (1965). Colorimetry of Total phenolics with phosphomolybdic phosphotungstic acid reagents. American Journal of Encology andViticulture, 16, 144-158.
[31]  Djilani, A., Toudert, N. and Djilani, S. (2011). Evaluation of the hypoglycemic effect and antioxidant activity of methanol extract of Ampelodesma mauritanica roots. Life Sciences and Medicine Research (LSMR), 31, 1-6.
[32]  Zhilen, J., Mengeheng, T. and Jianming, W. (1999). The determination of Flavonoid contents in Mulberry and their Scavenging effects on Superoxide Radicals. Food Chemistry, 64, 555-559.
[33]  Miliauskas, G., Venskutonis, P. R. and Van-Beek, T. A. (2004). Screening of radical scavenging activity of some medicinal and aromatic plant extract. Food Chemistry, 85 (2), 231-237.
[34]  Prieto, P., Pineda, M. and Aguilar, M. (1999). Spectrophotometric quantitation of Antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Analysis of Biochemistry, 269 (2), 337-341.
[35]  Oyesola, O., Ojewunmi, T. O., Omobolanle, I., Ogundele, C. M. and Sunday, A. (2014). In vitro antioxidant, antihyperglycaemic and antihyperlipidaemic activities of ethanol extract of Lawsonia inermis leaves. British Journal of Pharmaceutical Research, 4(3), 301-314.
[36]  Brand-Williams, W., Cuvelier, M. E. and Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. Lebensmittel-Wissenschaft & Technologie, 28(1): 25-30.
[37]  Kavitha, S., Rameshkannan, M. V. and Mani, P. (2018). Analysis of antioxidant and antidiabetic activity of Piper nigrum leaf extract by in vitro assay. IOSR Journal of Pharmacy and Biological Sciences, 13(2): 53-56.
[38]  Blois, M. S. (1958). Antioxidant determinations by the use of a stable free radical. Nature, 181:1199-1200.
[39]  Singh, N. and Rajini, P. S. (2004). Free radical scavenging activity of an aqueous extract of potato peel. Food Chemistry, 85, 611-616.
[40]  Halliwell, B., Guttridge, J. M. C. and Aruoma, O. I. (1987). Analytical Biochemistry, 165,215-219.
[41]  Ruch, R. J., Cheng, S. J. and Klaunig, E. (1989). Prevention of cyto-toxicity and inhibition of intercellular communication by anti-oxidant catechins isolated from Chineese green tea. Carcinogenesis, 10, 1003-1008.
[42]  Ilhami, G. I., Haci, A. A. and Mehmet, C. (2005). Determination of in vitro antioxidant and radical scavenging activities of propofol. Chemistry of Pharmaceuticals Bull, 53(3), 2 81-285.
[43]  Kumar, S. and Kumar, D. (2009). Antioxidant and free radical scavenging activities of edible weeds. African Journal of Food, Agriculture and Nutrition Development, 9(5), 1174-1190.
[44]  Ohkawa, H. Ohishi, N. and Yagi, K. (1979). Assay for Lipid peroxides in Animal tissues by Thiobarbituric acid reaction. Analytical Biochemistry, 95, 351-358.
[45]  Nabasree, E. and Brastati, T. (2002). Antioxidant activity of Piper bitter Leaf extract: In vivo. Food Chemistry, 88, 214-224.
[46]  Roberto, G., Baratta, M. T., Deans, S. G. and Dorman, H. J. D. (2001). Antioxidant antimicrobial activity of Foeniculum vulgare and Crithmum martimum essential oils. Plantation Medica, 66, 687-693.
[47]  Health, R. L. and Parker, L. (1968). Photoperoxidation in isolated chloroplast I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics, 125, 189-198.
[48]  Bernfield, P. (1951). Enzymes of starch degradation and synthesis. Adv Enzymol., 12:379-380.
[49]  Sindhu, S., Nair, V. K. and Anshu, M. (2013). In vitro studies on alpha amylase and alpha glucosidase inhibitory activities of selected plant extracts. European Journal of Experimental Biology, 3(1): 128-132.
[50]  Apostolidis, E., Kwon, Y. I. and Shetty, K. (2007). Inhibitory potential of herb, fruit andfungal-enriched cheese against key enzymes linked to type 2 diabetes and hypertension. Innovative Food Science and Emerging Technologies, 8, 46-54.
[51]  Ribeiro, S., Barbosa, L., Queiroz, J., Knödler, M. and Schieber, A. (2008). Phenolic compounds and antioxidant capacity of Brazilian mango (Mangifera indica L.) varieties. Food Chemistry, 110 (3): 620-626.
[52]  Reddy, N. S., Navanesan, S., Sinniah, S. K., Wahab, N. A. and Sim, K. S. (2012). Phenolic content, antioxidant effect and cytotoxic activity of Leea indica leaves. BMC Complement Altern Med, 12(128): 1472-1482.
[53]  Barreira, J. C., Ferreira, I. C., Oliveira, M. B. P., Pereira, J. A. (2008). Antioxidant activities of the extracts from chestnut flower, leaf, skins and fruit. Food chemistry, 107(3): 1106-1113.
[54]  Chakravarthy, B.K., Gupta, S. and Gode, K.D. (1982). Functional Beta cell Regeneration in the Islets of Pancreas in Alloxan-induced Diabetic Rats by (-) epicatechin. Life Sciences, 31(24), 2693-2697.
[55]  Harman, D. (1998). Free Radical Theory of Aging. Current Status, Amsterdam: Elsevier, 3-7.
[56]  Suba, V., Murugesan, T., Rao, R. B., Ghosh, L., Pal, M., Mandal, S. C. and Saha, B. P. (2004). Antidiabetic potential of Barlerialu pulina extract in rats. Fitoterapia, 75, 1-4.
[57]  Umamaheswari, M. and Chatterjee, T. K. (2008). In vitro antioxidant activities of the fractions of Coccin niagrandis L. leaf extract. African Journal of Traditional Complementary and Alternative Medicine, 5, 61-73.
[58]  Tundis, R., Loizzo, M. R. and Menichini, F. (2001). Natural products as alphaamylase and alphaglucosidase inhibitors and their hypoglycaemic potential in the treatment of diabetes: An update. Mini Rev Med. Chem., 10: 315-331.
[59]  Brahmachari, G. (2011). Bio-flavonoids with promising antidiabetic potentials: A critical survey. In: Tiwari, V.K., Mishra, B. B., editors. Opportunity, challenge and scope of natural products in medicinal chemistry. Trivandrum: Research Signpost, 2: 187-212.
[60]  Narita, Y. and Inouye, K. (2009). Kinetic analysis and mechanism on the inhibition of chlorogenic acid and its components against porcine pancreas 𝛼-amylase isozymes I and II. Journal of Agricultural and Food Chemistry, 57 (19), 9218-9225.
[61]  Shobana, S., Sreerama, Y. N. and Malleshi, N. G. (2009). Composition and enzyme inhibitory properties of finger millet (Eleusine coracana L.) seed coat phenolics: mode of inhibition of 𝛼- glucosidase and pancreatic amylase. Food Chemistry, 115(4), 1268-1273.
[62]  Bahadoran, Z., Mirmiran, P. and Azizi, F. (2013). Dietary polyphenols as potential nutraceuticals in management of diabetes: A review. J. Diabetes Metab. Disord., 12, 43.
[63]  Kwon, O. Eck, P. Chen, S. et al. (2007). Inhibition of the intestinal glucose transporter GLUT2 by flavonoids, The FASEB Journal, 21(2), 366-377.
[64]  Pornsak, S. (2003). Chemistry of pectin and its pharmaceutical uses: A review. Silpakorn University International Journal, 3 (1 & 2), 206.
[65]  Seri, K., Sanai, K., Matsuo, N., Kawakubo, K., Xue, C. and Inoue, S. (1996). L-arabinose selectively inhibits intestinal sucrase in an uncompetitive manner and suppresses glycemic response after sucrose ingestion in animals. Metabolism, 45: 1368-1374.
[66]  Preuss, H. G., Echard, B., Bagchi, D. and Stohs, S. (2007). Inhibition by natural dietary substances of gastrointestinal absorption of starch and sucrose in rats and pigs: 1. Acute studies. International Journal of Medical Science, 4, 196-202.
[67]  Krog-Mikkelsen, I., Hels, O., Tetens, I., Holst, J. J., Andersen, J. R. and Bukhave, K. (2011). The effects of L-arabinose on intestinal sucrase activity: dose-response studies in vitro in humans. The American Journal of Clinical Nutrition, 94 (2), 472-478.
[68]  Shibanuma, K., Degawa, Y. and Houda, K. (2011). Determination of the transient period of the EIS complex and investigation of the suppression of blood glucose levels by L-arabinose in healthy adults. European Journal of Nutrition, 50(6), 447-453.
[69]  Kim, J.S., Kwon, C. S. and Son, K. H. (2000). Inhibition of alphaglucosidase and amylase by luteolin, a flavonoid. Biosci. Biotechnol. Biochem, 64: 2458-2461.
[70]  Matsuda, H., Morikawa, T. and Yoshikawa, M. (2002). Antidiabetogenic constituents from several natural medicines. Pure and Applied Chemistry, 74(7): 1301-1308.
[71]  Shimizu, M., Kobayashi, Y., Suzuki, M., Satsu, H. and Miyamoto, Y. (2000). Regulation of intestinal glucose transport by tea catechins. Biofactors, 13: 65-75.
[72]  Shim, Y. J., Doo, H. K., Ahn, S.Y., Kim,Y. S., Seong, J. K., Park, I. S. and Min, B. H. (2003). Inhibitory effect of aqueous extract from the gal of Rhuz chinesis on alpha glucosidase activities and post prandia blood glucose, Journal of Enthopharmacology, 85, 283-287.
[73]  Ortiz-Andrade, R. R., Garcia-Jimenez, S., Castilo-Espana, P., Ramirez-Avila, G., Villalobos-Molina, R. and Estrada-Soto, S. (2007). Alpha-glucosidase inhibitory activity of the methanolic extract from Tourneforia hartwegiana; An anti- hyperglycemic agent. Journal of Ethnopharmacology, 109: 48-53.
[74]  Sacks, F. M., Carey, V. J., Anderson, C. A. M., Miller III, E. R., Copeland, T., Charleston, J., Harshfield, B. J., Laranjo, N., McCarron, P., Swain, J., White, K., Yee, K. and Appel, L. J. (2014). Effects of high vs low glycemic index of dietary carbohydrate on cardiovascular disease risk factors and insulin sensitivity. Journal of American Medical Association, 312, 2531-2541.
[75]  Krentz, A. and Bailey, C. (2005). Oral antidiabetic agents: Current role in Type 2 Diabetes mellitus. Drugs, 65 (3), 385-411.