Journal of Environment Pollution and Human Health
ISSN (Print): 2334-3397 ISSN (Online): 2334-3494 Website: Editor-in-chief: Dibyendu Banerjee
Open Access
Journal Browser
Journal of Environment Pollution and Human Health. 2018, 6(4), 126-137
DOI: 10.12691/jephh-6-4-2
Open AccessArticle

Elemental Concentrations and Source Apportionment of Atmospheric Air Particulates from two Functional Sites in the Metropolitan City of Ibadan, Nigeria

Tijani Saliu1, Oluyemi E. Ayodele1, , Olabanji I. Oluremi1 and Adeniji A. Oluwole1

1Department of Chemistry, Obafemi Awolowo University, Ile-Ife, Nigeria

Pub. Date: September 28, 2018

Cite this paper:
Tijani Saliu, Oluyemi E. Ayodele, Olabanji I. Oluremi and Adeniji A. Oluwole. Elemental Concentrations and Source Apportionment of Atmospheric Air Particulates from two Functional Sites in the Metropolitan City of Ibadan, Nigeria. Journal of Environment Pollution and Human Health. 2018; 6(4):126-137. doi: 10.12691/jephh-6-4-2


Ambient concentrations of size-segregated fractions of PM2.5 and PM2.5-10 were investigated for chemical compositions and pollution sources at two functional receptor sites (industrial and residential areas) in the metropolitan city of Ibadan, Nigeria between March 2014 and February, 2015. Seventy four fractions (37 each) were collected on quartz filter media using a low volume Gent sampler equipped with double-staged stacked filter unit. Elemental characterizations of both fractions were carried out using Particle Induced X-ray Emission (PIXE) technique in an external ion beam analysis set-up. Elements such as K, Na, P, S and Cl which were evidences of burning activities correlated well in the PM2.5, while the relationship observed between Al, Si, K, Ca and Fe suggested crustal material source for the elements in the PM10-2.5. Results of the seasalt estimation of some naturally occurring elements (Na, K, Ca and S) in the ambient air suggested their sources in Ibadan as either of crustal or anthropogenic. Source apportionment study with Positive Matrix Fractionalisation (PMF) receptor model identified five sources with stable profiles in PM2.5; tail pipe/industrial emissions (48.5%), suspended road dust (13.1%), ferrous metal smelting (34.6%), fine brake (0%), and vegetative/biomass burning (3.8%). Six were in PM2.5-10. They are petroleum products combustion plus smelting (9.3%), biomass burning (5.2%), exhaust and non-exhaust mobile (0%), airborne/re-suspended soil (23.4%), fuel oil combustion (24.5%), and municipal incineration plus solid waste combustion (37.6%). This study resolved high values for anthropogenic vehicular emission and solid waste burning, thus call for routine monitoring by regulatory agencies and stringent abatement options to control the possible untold hazards on health and environment.

ambient fractions PIXE source apportionment

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


[1]  World Health Organization (WHO). Ambient (Outdoor) Air Quality and Health. 2014.
[2]  IPCC, “Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change” edited by Stocker, T. F., Qin, D., Plattner, G. K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V. and Midgley, P. M, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. 2013.
[3]  Paatero, P. and Tapper U, “Positive Matrix Factorization: Non Negative Factor Model with Optimal Utilization of Error Estimates of Data Values”. Environmetrics, 5. 111-126. 1994.
[4]  Willis, R. D, “Workshop on UNMIX and PMF as Applied to PM2.5”. EPA 600-A-00-048, U.S. Environmental Protection Agency, Research Triangle Park, NC. 2000.
[5]  Qin, Y., Oduyemi, K. and Chan, L.Y, “Comparative Testing of PMF and CFA Models”. Chemometrics and Intelligent Laboratory Systems, 61. 75-87. 2002
[6]  Oluyemi, E. A. and Asubiojo, O. I, “Ambient Air Particulate Matter in Lagos, Nigeria: A Study Using Receptor Modeling with X-Ray Fluorescence Analysis”. Bulletin of Chemical Society of Ethiopia, 15(2). 97-108. 2001.
[7]  Owoade, K. O., Fawole, O. G., Olise, F. S., Ogundele, L. T., Olaniyi, B. H., Almeida, M. S., Ho, M. and Hopke, P. K, “Characterization and Source Identification of Airborne Particulate Loadings at Receptor Site-classes of Lagos Mega-City, Nigeria”. Journal of the Air & Waste Management Association, 63(9). 1026 -1035. 2013.
[8]  Owoade, K. O., Hopke, P. K., Olise, F. S., Ogundele, L. T., Fawole, O. G., Olaniyi, B. H., Jegede, O. O., Ayoola, M. A. and Bashiru, M. I,Chemical Compositions and Source Identification of Particulate Matter (PM2.5 and PM2.5-10) from a Scrap Iron and Steel Smelting Industry along the Ife-Ibadan Highway, Nigeria”. Atmospheric Pollution Research, 6, 107-119. 2015.
[9]  Abiye, O. E., Obioh, I. B., Ezeh, G. C., Alfa, A., Ojo, E. O and Ganiyu, A. K, “Receptor Modeling of Atmospheric Aerosols in Federal Capital Territory, Nigeria”. Ife Journal of Science, 16. 107-119. 2014.
[10]  Ezeh, G. C., Obioh, I. B. and Asubiojo, O. I, “Trace Metals and Source Identification of Air-borne Particulate Matter Pollution in a Nigerian Megacity”. Journal of Environmental Analytical Toxicology, 7. 1- 463. 2017.
[11]  Kim, E., Hopke, P. K. and Edgerton, E. S, “Source Identification of Atlanta Aerosol by Positive Matrix Factorization”. Journal of the Air & Waste Management Association, 53(6). 731-739. 2003.
[12]  Kothai, P., Saradhi, I. V., Prathibha, P., Hopke, P. K., Pandit, G. G. and Puranik, V. D, “Source Apportionment of Coarse and Fine Particulate Matter at Navi Mumbai, India”. Aerosol and Air Quality Research. 8. 423-436. 2008.
[13]  Zhang, R., Jing, J., Tao, J., Hsu, S. C., Wang, G., Cao, J., Lee, C. S. L., Zhu, L., Chen, Z., Zhao, Y. and Shen, Z, “Chemical Characterization and Source Apportionment of PM2.5 in Beijing: Seasonal Perspective”. Atmospheric Chemistry and Physics, 13. 7053-7074. 2013.
[14]  Saeaw, N. and Thepanondh, S, “Source Apportionment Analysis of Airborne VOCs using Positive Matrix Factorization in Industrial and Urban Areas in Thailand”. Atmospheric Pollution Research, 6, 644-650. 2015.
[15]  Landis, M. S., Pancras, J. P., Graney, J. R., White, E. M., Edgerton, E. S., Legge, A. and Percy, K. E, “Source Apportionment of Ambient Fine and Coarse Particulate Matter at the Fort McKay Community Site, in the Athabasca Oil Sands Region, Alberta, Canada”. Science of the Total Environment, 584-585, 105-117. 2017.
[16]  Maenhaut, W., Francois, F., and Cafmeyer, J, “The “Gent” Stacked Filter Unit (SFU) Sampler for the Collection of Aerosols in Two Size Fractions: Description and Instruction for Installation and Use”. pdf, accessed in August 2014.
[17]  Hopke, P. K., Xie, Y., Raunemaa, T., Biegalski, S., Landsberger, S., Maenhaut, W., Artaxo, P. and Cohen, D, “Characterization of the Gent stacked Filter unit PM10 Sampler”. Aerosol Science and Technology, 27, 726-735. 1997.
[18]  Calzolai, G., Chiar, M., Garci´a, O. I., Lucarelli, F. and Migliori, A, “The New External Beam Facility for Environmental Studies at the Tandetron Accelerator of LABEC, Italy”. Nuclear Instrumental Method in Physics Research, B 249. 928-931. 2006.
[19]  Székely, G. J., Rizzo, M. L. and Bakirov, N. K, “Measuring and Testing Independence by Correlation of Distances”. Annals of Statistics, 35(6). 2769-2794. 2007.
[20]  Mason, B, Principles of Geochemistry, 3rd ed. Wiley, New York. 1966.
[21]  Weast, R. C. and Astle M. J, Handbook of Chemistry and Physics, 63rd ed. CRC Press, Boca Raton, FL. 1982.
[22]  Cohen, D. D., Garton, D., Stelcer, E., Hawas, O., Wang, T., Poon, S., Kim, J., Cheol-Choi, B., Nam-Oh, S., Hye-Jung, S., Ko. M. Y., Uematsu, M, “Multi-elemental Analysis and Characterization of Fine Aerosols at Several Key ACE-Asia Sites”. Journal of Geophysical Research 109. 2004.
[23]  Xie, Y. L., Hopke. P. K., Paatero, P., Barrie, L. A. and Li, S. M, “Identification of Source Nature and Seasonal Variations of Arctic Aerosol by Positive Matrix Factorization”. Journal of Atmospheric Science, 56. 249-260. 1999.
[24]  Polissar, A.V., Hopke, P. K. and Paatero, P, “Atmospheric Aerosol over Alaska - 2. Elemental Composition and Sources”. Journal of Geophysical Research-Atmospheres, 103, 19045-19057. 1998.
[25]  Song, X. H., Polissar, A. V. and Hopke, P. K, “Source of Fine Particle Composition in the Northeastern U.S.” Atmospheric Environment, 35, 5277-5286. 2001.
[26]  Paatero P., Hopke P., Song, K. and Ramadan, Z, “Understanding and Controlling Rotation in Factor Analytic Models”. Chemometrics and Intelligent Laboratory Systems 60, 253-264. 2002.
[27]  Paatero, P., Hopke, P. K., Begum, B. A. and Biswas, S. K, “A Graphical Diagnostic Method for Assessing the Rotation in Factor Analytical Models of Atmospheric Pollution”. Atmospheric Environment, 39, 193-201. 2005.
[28]  Santoso, M., Lestiani, D. D., Mukhtar, R., Hamonangan, E., Syafrul, H., Markwitz, A. and Hopke, P. K, “Preliminary Study of the Sources of Ambient Air Pollution in Serpong, Indonesia”. Atmospheric Pollution Research, 2, 190-196. 2011.
[29]  World Health Organization (WHO). Air Quality guidelines for Europe. 2nd ed. Copenhagen Regional Office for Europe. WHO Regional Publications, European Series, no. 91. 2000.
[30]  Unione Europea. Direttiva 1999/30/CE del Consiglio del 22 aprile 1999 Concernente i valori limite di qualità dell’aria ambiente per il biossido di zolfo, il biossido di azoto, gli ossidi diazoto, le particelle e il piombo. Gazzetta Ufficiale delle Comunità Europee L 163. 29 giugno. 1999.
[31]  Cohen, D. D., Stelcer, E. and Garton, D, “Trace Elements in Street and House Dust: Source and Speciation”. Nuclear Instrumental Methods in Physics Research B, 190, 466. 2002.
[32]  Xu, L., Yu, Y., Yu, J., Chen, J., Niu, Z., Yin, L., Zhang, F., Liao, X. and Chen, Y, “Spatial Distribution and Sources Identification of Elements in PM2.5 among the Coastal City Group in the Western Taiwan Strait Region, China”. Science of the Total Environment, 442. 77-85. 2013.
[33]  Lough, G. C., Schauer, J. J., Park, J. S., Shafer, M. M., Deminter, J. T. and Weinstein, J. P “Emissions of Metals Associated with Motor Vehicle Roadways”. Environmental Science and Technology, 39, 826-836. 2005.
[34]  Hjortenkrans, D. S. T., Bergbäck, B. G. and Häggerud, A. V. “Metal Emissions from Brake Linings and Tires: Case Studies of Stockholm, Sweden 1995/1998 and 2005”. Environmental Science & Technology, 41, 5224-5230. 2007.
[35]  U S EPA. Environmental Justice and National Policy Act. 1995.
[36]  Kim, Y. P., Lee, J. H., Baik, N. J., Kim, J. Y., Shim, S. G. and Kang, C. H, “Summertime Characteristics of Aerosol Composition at Cheju Island, Korea”. Atmospheric. Environment, 32. 3905-3915. 1998.
[37]  Lee J. H., Kim, Y. P., Moon K. C., Kim H. K. and Lee C. B, “Fine Particle Measurements at two Background Sites in Korea between 1996 and 1997”. Atmospheric Environment, 35. 635-643. 2001.
[38]  Ezeh, G. C., Obioh, I. B., Asubiojo, O. I., Chiari, M., Nava, S., Calzolai, G., Lucarelli, F. and Nuviadenu, C. “The Complementarity of PIXE and PIGE Techniques: A Case Study of Size Segregated Airborne Particulates Collected from a Nigeria City”. Applied Radiation and Isotopes, 103. 82-92. 2015.
[39]  Gugamsetty, B., Wei, H., Liu, C. N., Awasthi, A., Hsu, S.C., Tsai, C. J., Roam, G. D., Wu, Y. C. and Chen, C. F, “Source Characterization and Apportionment of PM10, PM2.5 and PM0.1 by Using Positive Matrix Factorization”. Aerosol and Air Quality Research, 12. 476-491. 2012.
[40]  Young, T. M., Heeraman, D. A., Sirin, G. and Ashbaugh, L. L, “Resuspension of Soil as a Source of Airborne Lead near Industrial Facilities and Highways”. Environmental Science and Technology 36. 2484-2490. 2002.
[41]  Jeong, C. H., McGuire, M. L., Herod, D., Dann, T., Dabek-Zlotorzynska, E., Wang, D., Ding, L.Y., Celo, V., Mathieu, D. and Evans, G. “Receptor Model Based Identification of PM2.5 Sources in Canadian Cities”. Atmospheric Pollution Research, 2, 158-171. 2011.
[42]  Dall’Osto, M., Querol, X., Amato, F., Karanasiou, A., Lucarelli, F., Nava, S., Calzolai, G. and Chiari, M, “Hourly Elemental Concentrations in PM2.5 Aerosols Sampled Simultaneously at Urban Background and Road Site During SAPUSS - Diurnal Variations and PMF Receptor Modelling”. Atmospheric Chemistry and Physics, 13. 4375-4392. 2013.
[43]  Allen, A. G., Nemitz, E., Shi, J. P., Harrison, J. C. and Greenwood R. M, “Size Distributions of Trace Metals in Atmospheric Aerosols in the United Kingdom”. Atmospheric Environment, 35, 4581-4591. 2001.
[44]  Rajsic, S., Mijic, Z., Tasic, M., Radenkovic, M. and Joksic, J, “Evaluation of the Levels and Sources of Trace Elements in Urban Particulate Matter”. Environmental Chemistry Letters, 6, 95-100. 2008.
[45]  Watson, J. G. and Chow, J. C, “CMB8 Applications and Validation Protocol for PM2.5 and VOCs”. Desert Research Institute, Reno, NV, 2D1 (1808). 12. 1998.
[46]  Fergussion, J. E. and Kim, N. D. “Trace Elements in Street and House Dust: Source and Speciation”. Science of the Total Environment 100. 125-150. 1991.
[47]  Gordon, G. E, “Receptor Models”. Environmental Science & Technology, 22, 1132-1142. 1988.
[48]  Furusjo, E., Sternbeck, J. and Cousins, A. P, “PM10 Source Characterization at Urban and Highway Roadside Locations”. Science of the Total Environment, 387, 206-219. 2007.
[49]  Begum, B. A., Biswas, S. K., Kim, E., Hopke, P. K. and Khaliquzzaman, M, “Investigation of Sources of Atmospheric Aerosol at a Hot Spot Area in Dhaka, Bangladesh”. Journal of Air & Waste Management Association, 55, 227-240. 2005.
[50]  Guerzoni, S., Molinaroli, E. and Chester R, “Saharan Dust Inputs to the Western Mediterranean Sea: Depositional Patterns, Geochemistry and Sedimentological Implications”, Deep-Sea Research II, 44(3-4). 631-654. 1997.
[51]  Blanco, A., De Tomasi, F., Filipo, E., Manno, D., Perrone, M. R., Serra, R., Tafuro, A. M. and Tepore, A. A, “Characterisation of African Dust over Southern Italy”, Atmospheric Chemistry and Physics, European Geosciences Union, 4633-4670. 2003.
[52]  Wu, C. F., Larson, T. V., Wu, S. Y., Williamson, J., Westberg, H. H. and Liu, L. J. S, “Source Apportionment of PM2.5 and Selected Hazardous Air Pollutants in Seattle”. Science of the Total Environment, 386, 42-52. 2007.
[53]  Guo, H., Ding, A. J., So, K. L., Ayoko, G., Li, Y. S. and Hung, W. T, “Receptor Modeling of Source Apportionment of Hong Kong Aerosols and the Implication of Urban and Regional Contribution”. Atmospheric Environment, 43, 1159-1169. 2009.
[54]  Lee, J. H., Yoshida, Y., Turpin, B. J., Hopke, P. K., Poirot, P. J., Lioy, P. J. and Oxley, J. C, “Identification of Sources Contributing to Mid-Atlantic Regional Aerosol”. Journal of Air and Waste Management Association, 52, 1186-1205. 2002.
[55]  Morishita, M., Keeler, G. J., Wagner, J. G. and Harkema, J. R, “Source Identification of Ambient PM2.5 during Summer Inhalation Exposure Studies in Detroit, MI”. Atmospheric Environment, 40, 3823-3834. 2006.
[56]  Lim, J. M., Lee, J. H., Moon, J. H., Chung, Y. S. and Kim, K. H, “Source Apportionment of PM10 at a Small Industrial Area using Positive Matrix Factorization”. Atmospheric Research, 95, 88-100. 2010.