Journal of Environment Pollution and Human Health
ISSN (Print): 2334-3397 ISSN (Online): 2334-3494 Website: Editor-in-chief: Dibyendu Banerjee
Open Access
Journal Browser
Journal of Environment Pollution and Human Health. 2017, 5(2), 36-61
DOI: 10.12691/jephh-5-2-2
Open AccessArticle

Radiation Therapeutics and Its Acute Effects on Human Body

Ravi Kant Upadhyay1,

1Department of Zoology, D. D. U. Gorakhpur University, Gorakhpur 273009. U.P, India

Pub. Date: April 27, 2017

Cite this paper:
Ravi Kant Upadhyay. Radiation Therapeutics and Its Acute Effects on Human Body. Journal of Environment Pollution and Human Health. 2017; 5(2):36-61. doi: 10.12691/jephh-5-2-2


Present review article elucidate radiation generated effects on blood brain barrier, tissues, cells and organ systems of human body. Radiation is used to finish brain metastasis and tumor ablation but repetitive exposure of radiation induces multiple deformities almost in all tissues or organs. Low physiological dosage of radiation is provided to increase BBB permeability by loosing its structural integreity of BBB to administer the therapeutic drugs. But repeatitive use of radiation for diagnosis and therapeutic purposes generates severe side effects both instant and delayed. Irradiation causes instant effects on central nervous system (CNS) while late effects including demyelination, gliosis and necrosis, inflammation of photoreceptors, skin, lungs, hematopoietic cells and syndromes of bone-marrow depression and gastrointestinal damage. Radiation generates genotoxic effects in chromosomes, entangle its separation during cell division and disturb replication and transcription of DNA. Radiation exposure imposes intermediate effects like abnormal bonding between adjacent molecules while in germ cells radiation induces transient azospermia and failure of gonadal functions. Radiations also cause aberration of the blood vessels of the brain due to binding of radiation to radioreceptors and induce various syndromes and neurological diseases. In this review article an over view of all possible consequences of radiation exposure on human life and emphasize role of radio - protective medicines and other safety measures is presented. It also suggests use of combination therapies for cancer treatment rather than using radiation alone. No doubt combination therapies will prove better to ablate tumor at an earlier stage and may become landmark discovery in the field of cancer biology.

chemotherapy radiation radiation therapy blood brain barrier vascular permeability acute biological effects disorders and syndromes

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


[1]  Baker-Groberg SM, Bornstein S, Zilberman-Rudenko J, Schmidt M, Tormoen GW, Kernan C, Thomas CR Jr, Wong MH, Phillips KG, McCarty OJ.Effect of ionizing radiation on the physical biology of head and neck squamous cell carcinoma cells. Cell Mol Bioeng. 2015 Sep 1; 8 (3):517-525.
[2]  Ozpolat B, Benbrook DM. Targeting autophagy in cancer management - strategies and developments. Cancer Manag Res. 2015 Sep 11; 7: 291-9.
[3]  Zhang F, Xu CL, Liu CM. (2015) Drug delivery strategies to enhance the permeability of the blood-brain barrier for treatment of glioma. Drug Des Devel Ther. 9:2089-100.
[4]  Oldrini G, Vogin G, Renard-Oldrini S, Taste-George H, Grignon B, Henrot P. 2015 Post-therapeutics features of hepatocellular carcinoma treated by stereotactic body radiation therapy. Presse Med. 44 (9): 951-3.
[5]  Lin FY, Chintagumpala M. 2015. Advances in Management of Pediatric Ependymomas. Curr Oncol Rep. 17 (10): 47.
[6]  Ashour R, Orbach DB. 2015 Interventional neuroradiology in children: diagnostics and therapeutics. Curr Opin Pediatr. 27 (6): 700-5.
[7]  A Mozumder, Fundamentals of Radiation Chemistry, Academic Press, Edition: 1st 1999.
[8]  L'Annunziata, Michael; Mohammad Baradei, Handbook of Radioactivity Analysis. Academic Press. p. 58, 2003.
[9]  Charles Hodgman, Ed. CRC Handbook of Chemistry and Physics, 44th Ed. USA: Chemical Rubber Co. p. 2850, 1961.
[10]  Grupen, Claus; G. Cowan; S. D. Eidelman; T. Stroh, Astroparticle Physics. Springer. p. 109, 2005.
[11]  A.P. Romodanov, V.A. Baraboĭ, D.A. Sutkovoĭ, 1994. Effect of ionizing radiation on central nervous system,” Fiziol Zh ; Vol. 40, no.2, pp. 107-21,
[12]  L.F. Semenov, L.N. Altukhova, N.M. Dobrovol'skiĭ, State of the blood vessels of the brain under the effect of radioprotectors, Radiobiologiia.; Vol. 9, no. 2, pp. 242-5, 1969.
[13]  W.H. Oldendorf, E,M. Cornford, A comparison of total body and local spinal cord irradiation in experimental allergic encephalomyelitis, J Neuropathol Exp Neurol.; Vol. 36, no. 1, pp. 50-61, 1977.
[14]  H. Ovadia, T. Siegal, J. Weidenfeld, Delayed central nervous system irradiation effects in rats--part 2: aggravation of experimental autoimmune encephalomyelitis. Neuroimmunomodulation, Vol. 20, no. 1, pp. 51-6, 2013.
[15]  B. Kura, C. Viczenczova, K. Frimmel, T. Ravingerova, N. Tribulova, L.Okruhlicova, A. Lazou, R.Kukreja, M.Fulop, J.Slezak, P688 The effect of ionizingradiation on morphological and molecular changes of the rat myocardium, Cardiovasc Res. Vol. 103, no. 1, pp. S126, 2014.
[16]  G.L.Vinogradov, L.G. Andrienko, G.M. Naumenko, The phenomenon of adaptive immunity in exposure to nonionizing microwave radiation, Radiobiologiia, Vol. 31, no.5, pp. 718-21, 1991.
[17]  J.W. Hopewell, Models of CNS radiation damage during space flight, Adv Space Res, Vol. 14, no. 10, pp. 433-42, 1994.
[18]  Wang H, Sethi G, Loke WK, Sim MK. Des-Aspartate-Angiotensin I Attenuates Mortality of Mice Exposed to Gamma Radiation via a Novel Mechanism of Action. PLoS One. 2015 Sep 17; 10 (9): e0138009.
[19]  G.E. Gauger, C.A.Tobias, T. Yang, M. Whitney, The effect of space radiation of the nervous system, Adv Space Res.; Vol. 6, no.11, pp. 243-9, 1986.
[20]  N.I. Ossetrova, C.P. Condliffe, P.H. Ney, K. Krasnopo lsky, K.P. Hieber, A. Rahman, D.J. Sandgren, Early-response biomarkers for assessment of radiation exposure in a mouse total-body irradiation model, Health Phys. Vol. 106, no. 6, pp. 772-86, 2014.
[21]  P. Grabham, P. Sharma, Acute effects of ionizing radiation on human endothelial barrier function,” J Radiat; vol. 55, no.1, pp. i97- i98. 2014.
[22]  T. Taira, T. Beppu, K. Matsumori, O. Kubo, Combination of radiation and PVB chemotherapy for intracranial malignant germ cell tumor, No Shinkei Geka, Vol. 14, no.7, pp. 927-33. 1986.
[23]  J.O. Jarden, Pathophysiological aspects of malignant brain tumors studied with positron emission tomography,” Acta Neurol Scand Suppl , Vol. 156, pp. 1-35, 1994.
[24]  R.S. Seshadri, R.G. Ryall, M.S. Rice, M. Leahy, R. Ellis, The effect of cranial irradiation on blood-brain barrier permeability to methotrexate, Aust Paediatr J.;Vel.15, no.3, pp. 184-5, 1979 .
[25]  P.Rubin, D,M. Gash, J.T.Hansen, D.F. Nelson, J.P. Williams, Disruption of the blood- brain barrier as the primary effect of CNS irradiation, Radiother Oncol ; Vol. 31, no. 1, pp. 51-60, 1994.
[26]  J. Piek, T.Adelt, K.Huse, W.J. Bock, Cerebrospinal fluid and plasma aminograms in patients with primary and secondary tumors of the CNS, Infusionsther Klin Ernahr, Vol. 14, no. 2, pp. 73-7, 1987.
[27]  W.W.Tourtellotte, A.R. Potvin, R.W. Baumhefner, J.H. Potvin, B.I. Ma, K. Syndulko, Z.Petrovich, Multiple sclerosis de novo CNS IgG synthesis. Effect of CNS irradiation, Arch Neurol, Vol. 37, no. 10, pp. 620-4, 1980.
[28]  G.R. Criscuolo, The genesis of peritumoral vasogenic brain edema and tumor cysts: a hypothetical role for tumor-derived vascular permeability factor, Yale J Biol Med ; Vol. 66, no.4, pp. 277-314, 1993.
[29]  S.G. McDuff, Z.J. Taich, J.D. Lawson, P. Sanghvi, E.T. Wong, F.G. Barker 2nd, F.H. Hochberg, J.S. Loeffler, P.C. Warnke, K.T. Murphy, A.J. Mundt, B .S. Carter, C.R. McDonald, C.C. Chen, Neurocognitive assessment following whole brainradiation therapy and radiosurgery for patients with cerebral metastases, J Neurol Neurosurg Psychiatry.; Vol. 84, no. 12, pp. 1384-91. 2013
[30]  T.W. Griffin, J.S. Rasey, W.A. Bleyer, The effect of photon irradiation on blood-brain barrier permeability to methotrexate in mice, Cancer.;Vol. 40, no. 3, pp. 1109-11, 1977.
[31]  J.W. Cozzens, L.J. Cerullo, Comparison of the effect of the carbon dioxide laser and the bipolar coagulator on the cat brain, .Neurosurgery.; Vol.16, no. 4, pp. 449-53, 1985.
[32]  D.P. Kingsley, B.E. Kendall, CT of the adverse effects of therapeutic radiation of the central nervous system, AJNR Am J Neuroradiol.; Vel. 2, no.5, pp. 453-60, 1981.
[33]  A.J. Storm, A.J. van der Kogel, K. Nooter, Effect of X- irradiation on the pharmacokinetics of methotrexate in rats: alteration of the blood-brain barrier, Eur J Cancer Clin Oncol.; Vol. 21, no. 6, pp. 759-64, 1985.
[34]  W.F. Caveness, Pathology of radiation damage to the normal brain of the monkey, Natl Cancer Inst Monogr.; vol. 46, pp. 57-76, 1977.
[35]  M.P. Remler, W. Marcussen, Radiation-controlled focal pharmacology in the therapy of experimental epilepsy,” Epilepsia.; Vol.22, no. 2, pp. 153-9, 1981.
[36]  M.P. Remler, W.H. Marcussen, K. Sigvardt, Systemic carbachol used in radiation- controlled focal brain pharmacology can decrease rat running, Life Sci ; Vol.45, no. 2, pp. 151-6, 1989.
[37]  O.Mihalcea, A.C. Arnold, Side effect of head and neck radiotherapy: optic neuropathy, Oftalmologia.; Vol.52, no.1, pp. 36-40, 2008.
[38]  C.F. Hsueeh, S.H. Hsue, P.C. Chu, The effect of various noxious stimuli on the blood brain barrier. I. The change in blood-brain barrier and in capillary permeability in the early stage of radiation injury .Sheng Li Xue Bao. ; Vol. 28, pp. 199-207, 1965.
[39]  G.S. Cruickshank, R. Rampling, Does tumour related oedema contribute to the hypoxic fraction of human brain tumours, ?Acta Neurochir Suppl (Wien); Vol. 60, pp. 378-80, 1994.
[40]  G.S. Cruickshank, D. Ngoga, A. Detta, S. Green, N.D. James, C. Wojnecki, J. Doran, J.Hardie, M. Chester, N.Graham, Z. Ghani, G. Halbert, M. Elliot, S. Ford, R. Braithwaite, T.M. Sheehan, J. Vickerman, N. Lockyer, H. Steinfeldt, G. Croswell, A. Chopra, R. Sugar, A Boddy, A cancer research UK pharmacokinetic study of BPA-mannitol in patients with high grade glioma to optimise uptake parameters for clinical trials of BNCT, Appl Radiat Isot.; Vol. 67, no. 7-8, pp. S31-3.
[41]  R.V. Dorn, J.H. Spickard, M.L. Griebenow, The effect of ionizing radiation on the blood-brain-barrier (BBB): considerations for the application of boron neutron capture therapy (BNCT) of brain tumors, Basic Life Sci. Vol.50, pp. 145-52, 1989.
[42]  J.A.Coderre, G.M. Morris, P.L. Micca, J.W. Hopewell, I. Verhagen, B.J. Kleiboer, A.J. van der Kogel, Late effects of radiation on the central nervous system: role of vascular endothelial damage and glial stem cell survival, Radiat Res.; Vol. 166, no. 3, pp. 495-503, 2006.
[43]  G.M. Morris, J.A. Coderre, J.W. Hopewell, P.L. Micca, M.M. Nawrocky, H.B. Liu, A.Bywaters, Response of the central nervous system to boron neutron capture irradiation: evaluation using rat spinal cord model, Radiother Oncol; Vol. 32, no.3, pp. 249-55, 1994.
[44]  D.R. Groothuis, D.C. Wright, C.B. Ostertag, The effect of 125I interstitial radiotherapy on blood-brain barrier function in normal canine brain, J Neurosurg.;Vol. 67, no.6, pp. 895-902, 1987.
[45]  M.M. Gromakovskaia, Role of humoral mechanisms in changes of the status of the hematoencephalic barrier under the effect of small doses of roentgen rays, Radiobiologiia.;Vol. 9, no. 5, pp. 760-3, 1969.
[46]  Maĭzelis MIa. Effect of antenatal ethanol exposures on the function of the hemato- encephalic barrier in animals, Biull Eksp Biol Med.; Vol.101, no.2, pp. 172-4, 1986.
[47]  A. Lampron, M.Lessard, S. Rivest, Effects of myeloablation, peripheral chimerism, and whole-body irradiation on the entry of bone marrow-derived cells into the brain, Cell Transplant.; Vol. 21, no. 6, pp. 1149-59. 2012.
[48]  G. Charest, L. Sanche, D. Fortin, D. Mathieu, B. Paquette, Optimization of the route of platinum drugs administration to optimize the concomitant treatment with radiotherapy for glioblastoma implanted in the Fischer rat brain, J Neurooncol, Vol. 115, no. 3, pp. 365-73. 2013.
[49]  Taira T, Beppu T, Matsumori K, Kubo O. Combination of radiation and PVB chemotherapy for intracranial malignant germ cell tumor. No Shinkei Geka. 1986 Jun; 14(7): 927-33.
[50]  J.T. Kwon, S.K. Hwang, H. Jin, D.S. Kim, A. Minai- Tehrani, H.J.Yoon, M. Choi, T.J.Yoon, D.Y. Han, Y.W. Kang, B.I. Yoon, J.K.Lee, M.H. Cho, Body distribution of inhaled fluorescent magnetic nanoparticles in the mice, J Occup Health, Vol. 50, no. 1, pp. 1-6, 2008.
[51]  W.J. Trickler, S.M. Lantz, R.C. Murdock, A.M. Schrand, B.L. Robinson, G.D. Newport, J.J. Schlager, S.J. Oldenburg, M.G. Paule, Slikker W Jr, S.M. Hussain, S.F. Ali, Silver nanoparticle induced blood-brain barrier inflammation and increased permeability in primary rat brain microvessel endothelial cells, Toxicol Sci, Vol. 118, no.1, pp. 160-70.
[52]  J.J. Connell, G. Chatain, B. Cornelissen, K.A. Vallis, A. Ha milton, L. Seymour, D.C.Anthony, N.R. Sibson, Selective permeabilization of the blood-brain barrier at sites of metastasis, J Natl Cancer Inst ; Vol. 105, no. 21, pp. 1634-43. 2013.
[53]  P. Grabham, P. Sharma, A. Bigelow, P. Grabham, P. Sharma, A. Bigelow, Geard C. Distinct mechanisms of the inhibition of vasculogenesis by different specie s of ionizing particles, J Radiat Res.; Vol. 55 no. 1, pp. i44- i45. 2014
[54]  S.N. Tapiawala , J.M. Bargman , D.G. Oreopoulos, Simons M. Prolonged use of the tyrosine kinase inhibitor in a peritoneal dialysis patient with metastatic renal cell carcinoma: possible beneficial effects on peritoneal membrane and peritonitis rates. Int Urol Nephrol.Vol. 41, no. 2, pp. 431-4. 2009.
[55]  W.A. Hall, Convection-enhanced delivery: neurosurgical issues, Curr Drug Targets.; Vol. 10, no. 2, pp. 126-30, 2009.
[56]  J. Pleticha, T.P. Maus, J.A. Christner, M.P. Marsh, K.H. Lee, W.M. Hooten, A.S. Beutler.Minimally invasive convection-enhanced delivery of biologics into dorsal root ganglia: validation in the pig model and prospective modeling in humans. J Neurosurg. 4: 1-8. 2014
[57]  A.M. Sonabend, A.S. Carminucci, B. Amendolara, M. Bansal, R. Leung, L Lei, et al, Convection-enhanced delivery of etoposide is effective against murine proneural glioblastoma, Neuro Oncol. Neuro Oncol. 16(9): 1210-9. 2014
[58]  N.U. Barua, K. Hopkins, M. Woolley, S. O'Sullivan, R. Harrison, R.J. Edwards, A.S. Bienemann, M.J. Wyatt, A. Arshad, S.S. Gill, A novel implantable catheter system with transcutaneous port for intermittent convection-enhanceddelivery of carboplatin for recurrent glioblastoma, Drug Deliv. Drug Deliv. 2016; 23(1): 167-73.
[59]  N. Luther, Z. Zhou, P. Zanzonico, N.K. Cheung, J. Humm, M.A. Edgar, M.M.Souweidane. The potential of theragnostic ¹²⁴I-8H9 convection-enhanceddelivery in diffuseintrinsic pontine glioma, Neuro Oncol. Vol.16, no.6, pp. 800-6, 2014.
[60]  F. Casanova, P.R. Carney, M. Sarntinoranont, Effect of needle insertion speed on tissue injury, stress, and backflow distribution for convection-enhanceddelivery in the rat brain, PLoS One.Vol.9, no.4:e94919. eCollection 2014.
[61]  M.E. Emborg, S.A. Hurley, V. Joers, P.M. Tromp do, C.R. Swanson, S Ohshima-Hosoyama, et al, Titer and product affect the distribution of gene expression after intraputaminal convection-enhanceddelivery, Stereotact Funct Neurosurg. Vol. 92, no. 3, pp. 182-94, 2014.
[62]  K.A. Sillay, S.G. McClatchy, B.A. Shepherd, G.T. Venable, T.S. Fuehrer, Image- guided convection-enhanceddelivery into agarose gel models of the brain, J Vis Exp. Vol. 87, 2014.
[63]  X,Yang, R. Saito, T. Nakamura, R. Zhang, Y. Sonoda, T. Kumabe, J. Forsayeth, K. Bankiewicz, T. Tominaga, Peri-tumoral leakage during intra-tumoral convection- enhanceddelivery has implications for efficacy of peri-tumoral infusion before removal of tumor, Drug Deliv. Vol.28, pp. 1-6.
[64]  M. Brady, D. Singh, P.J. Anand, A. Fleisher, W.C. Broaddus, J. Mata, W. Olbricht, R. Raghavan, In vivo performance of a microfabricated catheter for intraparenchymal 111 delivery, Neurosurgery Vol.61, pp. 1-195, 2014.
[65]  W.T. Phillips, A. Bao, A.J. Brenner, B.A. Goins, Image-guided interventional therapy for cancer with radiotherapeutic nanoparticles, Adv Drug Deliv Rev, 2014.
[66]  A. Suzuki, P. Leland, H. Kobayashi, P.L. Choyke, E.M. Jagoda, T. Inoue, B.H. Joshi, et al, Analysis of Biodistribution of Intracranially Infused Radiolabeled Interleukin-13 Receptor-Targeted Immunotoxin IL-13PE by SPECT/CT in an Orthotopic Mouse Model of Human Glioma, J Nucl Med. 55(8): 1323-9.
[67]  M. Ahn, K. Bajsarowicz, A. Oehler, A. Lemus, K. Bankiewicz, S.J. DeArmond. Convection-enhanceddelivery of AAV2-PrPshRNA in prion- infected mice. PLoS One. Vol.9, no.5:e98496, 2014.
[68]  V. Chandramohan, D.D. Bigner, A novel recombinant immunotoxin-based therapy targeting wild-type and mutant EGFR improves survival in murine models of glioblastoma, Oncoimmunology Vol.2, no.12, e26852, 2013.
[69]  T. Tsujiuchi, A. Natsume, K. Motomura, G.Kondo, M. Ranjit, R. Hachisu, I.Sugimura, S. Tomita, I. Takehara, M.Woolley, N.U. Barua, S.S. Gill, A.S. Bienemann, Y. Yamashita, S. Toyokuni, T.Wakabayashi, Preclinical evaluation of an O(6)-methylguanine-DNA methyltransferase-siRNA/liposome complex administered by convection-enhanced delivery to rat and porcine brains, Am J Transl Res.Vol.6, no.2, pp. 169-78, 2014.
[70]  I. Kim, S. Paek, B.D. Nelson, E.J. Knight, M.P. Marsh, A.J. Bieber, K.E. Bennet, K.H. Lee. Implementation of a chronic unilateral intraparenchymal drug delivery system in a swine model.J Neurosci Methods. Vol. 227, pp. 29-34, 2014.
[71]  N.S. Ningaraj, U.T. Sankpal, D. Khaitan, E.A. Meister, T. Vats, Activation of KATP channels increases anticancer drug delivery to brain tumors and survival, Eur J Pharmacol; Vol. 602, no. 2-3, pp. 188-93. 2009.
[72]  J.J. Verhoeff, O. van Tellingen, A. Claes, L.J. Stalpers, M.E. van Linde, D.J. Richel, W.P. Leenders, W.R. van Furth, Concerns about anti-angiogenic treatment in patients with glioblastoma multiforme, BMC Cancer, Vol. 9, pp. 444.
[73]  S. Rieken, D. Habermehl, A. Mohr, L.Wuerth, K. Lindel, K. Weber, J. Debus, S.E. Combs, Targeting ανβ3 and ανβ5 inhibits photon- induced hypermigration of malignant glioma cells, Radiat Oncol, Vol. 6, pp. 132, 2011.
[74]  R. Grossman, H. Brastianos, J.O. Blakeley, A. Mangraviti, B. Lal, P. Zadnik, L. Hwang, R.T. Wicks, R.C. Goodwin, H. Brem, B. Tyler, Combination of anti-VEGF therapy and temozolomide in two experimental human glioma models, J Neurooncol, Vol. 116, no.1, pp. 59-65, 2014.
[75]  A. Khatri, M.W. Gaber, R.C.Brundage, M.D. Naimark, S.K. Hanna, C.F. Stewart, M.N. Kirstein, Effect of radiation on the penetration of irinotecan in rat cerebrospinal fluid, Cancer Chemother Pharmacol , Vol. 68, no. 3, pp. 721-31, 2011.
[76]  H.Matsuoka, J.Tsurutani, J.Tanizaki, T. Iwasa, Y. Komoike, A.Koyama, K. Nakagawa, Regression of brain metastases from breast cancer with eribulin: a case report, BMC Res Notes, Vol. 6, pp. 541, 2013.
[77]  D.C. Anthony, N.R.Sibson, P. Losey, D.P.Meier, D. Leppert, Investigation of immune and CNS-mediated effects of fingolimod in the focal delayed-type hypersensitivity multiple sclerosis model,” Neuropharmacology, Vol. 79, pp. 534-41, 2014.
[78]  H. Ishiyama, B.S. Teh, H. Ren, S. Chiang, A. Tann, A.I. Blanco, A.C.Paulino, R.Amato, Spontaneous regression of thoracic metastases while progression of brain metastases after stereotactic radiosurgery and stereotactic body radiotherapy for metastatic renal cell carcinoma: abscopal effect prevented by the blood-brain barrier, Clin Genitourin Cancer, Vol. 10, no. 3, pp. 196-8, 2012.
[79]  Yang FY, Horng SC. Chemotherapy of glioblastoma by targeted liposomal platinum compounds with focused ultrasound. Conf Proc IEEE Eng Med Biol Soc. 2013; 2013: 6289-92.
[80]  J.A. Zawaski, M.W. Gaber, O.M. Sabek, C.M. Wilson, C.D. Duntsch, T.E. Merchant, Effects of irradiation on brain vasculature using an in situ tumor mod el, Int J Radiat Oncol Biol Phys.; Vol. 82, no. 3, pp. 1075-82. 2012.
[81]  Charest G1, Sanche L, Fortin D, Mathieu D, Paquette B. Optimization of the route of platinum drugs administration to optimize the concomitant treatment with radiotherapy for glioblastoma implanted in the Fischer rat brain. J Neurooncol. 2013 Dec; 115(3): 365-73.
[82]  R. Ludwig, Effect of cranial irradiation on the blood-cerebrospinal fluid and blood-brain barrier, Klin Padiatr.; Vol. 199, no.3, pp. 233-8, 1987.
[83]  I.Z. Popiashvili, Changes in the functional status of the hemato-encephalic barrier under the effect of x- irradiation, Med Radiol (Mosk).; Vol.12, no.2, pp. 44-7, 1967.
[84]  D. Lüders, Effect of x- irradiation and sodium dehydrocholate on the blood-brain barrier: results of animal experiments with gamma- encephalography, Arzneimittelforschung; Vol. 16, no. 2, pp. 206-9, 1966.
[85]  K.Zipf, W. Rössner, K. Tempel, Effect of radiomimetics and roentgen rays on the permeability of the blood-brain barrier, Naunyn Schmiedebergs Arch Pharmakol Exp Pathol.; Vol. 254, no.1, pp. 83-90, 1966.
[86]  M. Bulat, Z. Supek, Z. Deanović, Effect of x- irradiation on the permeability of the blood-brain barrier for 5-hydroxytryptamine in normal and adrenalectomized rats, Int J Radiat Biol Relat Stud Phys Chem Med;Vol. 11, no.3, pp. 307-10, 1966.
[87]  J.R. Bergen, H.D. Seay, C.K. Levy, W.P. Koella, Effect of head X irradiation on the uptake of radiophposphorus by rat brain. Proc Soc Exp Biol Med;Vol. 117, pp. 459-62, 1964.
[88]  V.Nair, L.J. Roth, Effect of X ray irradiation and certain treatments on blood brain barrier permeability” Radiat Res.;Vol. 23, pp. 249-64, 1964.
[89]  V.V. Antipov, V.P. Fedorov, A.N. Kordenko, I.B. Ushakov, Modification of radiation changes in the hemato-encephalic barrier using exogenous hypoxia, Med Radiol (Mosk).; Vol. 32, no.7, pp. 53-7.
[90]  V.P. fedorov, I.B. Ushakov, Hematoencephalic barrier function during irradiation under hypo- and hyperoxia, Radiobiologiia; Vol. 27, no.2, pp. 182-8, 1987.
[91]  V.V. Sabaev, V.S. Shashkov, P.V. Sergeev, V.A. Chistiakov, M.A. Saĭdametov, The effect of radioprotectors on the functional state of blood-tissue barriers in animals with limited mobility, Kosm Biol Med.;Vol. 6, no.1, pp. 7-10, 1972.
[92]  D. Leszczynski, S. Joenvaara, Non-thermal activation of the hsp27/p38MAPK stress pathway by mobile phone radiation in human endothelial cells: Molecular mechanism for cancer - and blood-brain barrier - related effects, Differentiation. Vol. 70, pp. 120-129, 2002.
[93]  H. Nittby, A. Brun, J. Eberhardt, Increased blood-brain barrier permeability in mammalian brain 7 days after exposure to the radiation from a GSM-900 mobile phone, Pathophysiology. Vol.16, pp. 103-112, 2009.
[94]  Ovadia H, Siegal T, Weidenfeld J. Delayed central nervous system irradiation effects in rats-part 2: aggravation of experimental autoimmune encephalomyelitis. Neuroimmunomodulation. 20(1): 51-6. 2013
[95]  Schwartz JA, Baxter J., Brill D, Burns JR. Radionuclide cerebral imaging confirming brain death, JAMA 249 (1983) 246.
[96]  H. Winkler, Examination of the effect of roentgen rays on hemato-encephalic barrier by means of radioactive phosphorus, Zentralbl Allg Pathol, Vol. 97, no. 5-6, pp. 301-7, 1957.
[97]  P.I.Lomonos, A. Shamakhmudov, Distribution of P 32 in the tissue of rat organs under the effect of ionizing radiation and introduction of ACTH. Med Radiol (Mosk).;Vol. 51, pp. 59-63, 1963.
[98]  W.M.Williams, S.T. Lu, M. Del Cerro, S.M. Michaelson, Effect of 2450 MHz microwave energy on the blood-brain barrier to hydrophilic molecules. D. Brain temperature and blood-brain barrier permeability to hydrophilic tracers, Brain Res,Vol. 319, no.2, pp. 191-212, 1984.
[99]  E.N.Albert, M. Sherif, Morphological changes in cerebellum of neonatal rats exposed to 2.45 GHz microwaves, Prog Clin Biol Res,Vol. 257, pp. 135-51, 1988.
[100]  Moriyama E, Salcman M, Broadwell RD. Blood-brain barrier alteration after microwave-induced hyperthermia is purely a thermal effect: I. Temperature and power measurements. Surg Neurol. 35(3): 177-82. 1991.
[101]  Qiu LB, Ding GR, Zhang YM, Zhou Y, Wang XW, Li KC, Xu SL, Tan J, Zhou JX, Guo GZ. Effects of electromagnetic pulse on blood-brain barrier permeability and tight junction proteins in rats. Qiu Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi. 27(9): 539-43, 2009.
[102]  Y.K. Gutiérrez-Mercado, L.Cañedo-Dorantes, U. Gómez-Pinedo, G. Serrano-Luna, J. Bañuelos-Pineda, A. Feria-Velasco, Increased vascular permeability in the circumventricular organs of adult rat brain due to stimulation by extremely low frequency magnetic fields, Bioelectromagnetics, Vol. 34, no. 2, pp. 145-55. 2013.
[103]  R. Stam, Electromagnetic fields and the blood-brain barrier,” Brain Res Rev; Vol. 65, no. 1, pp. 80-97, 2010.
[104]  S. Gulturk, A. Demirkazik, I. Kosar, A. Cetin, H.S. Dökmetas, T. Demir, Effect of exposure to 50 Hz magnetic field with or without insulin on blood-brain barrier permeability in streptozotocin- induced diabetic rats, Bioelectromagnetics, Vol. 31, no.4, pp. 262-9. 2010.
[105]  C.S. Platta, D. Khuntia, M.P. Mehta, J.H. Suh, Current treatment strategies for brain metastasis and complications from therapeutic techniques: a review of current literature, Am J Clin Oncol, Vol. 33, no. 4, pp. 398-407. 2010.
[106]  F.S. Prato, J.M. Wills, J. Roger, H. Frappier, D.J. Drost, T.Y. Lee, R.R. Shivers, P. Zabel, Blood-brain barrier permeability in rats is altered by exposure to magnetic fields associated with magnetic resonance imaging at 1.5 T, Microsc Res Tech, Vol. 27, no. 6, pp. 528-34, 1994.
[107]  T. Trnovec, K. Volenec, S. Bezek, Z. Kállay, M. Durisová, V. Scasnár, M. Kubu, V. Svoboda, The effect of high energy electron irradiation on blood-brain barrier permeability to haloperidol and stobadin in rats, Radiat Environ Biophys, Vol. 30, no. 4, pp. 277-87, 1991.
[108]  B.M. Rabin, W.A. Hunt, J. Lee, Attenuation and cross-attenuation in taste aversion learning in the rat: studies with ionizing radiation, lithium chloride and ethanol, Pharmacol Biochem Behav, Vol. 31, no.4, pp. 909-18, 198.
[109]  F.M. Lehmann, W. Lierse, H.J.Thiel, Histochemical alterations in the adult rat brain after X-ray irradiation: effects of O-(beta-hydroxyethyl)-rutosides, Acta Anat (Basel), Vol. 135, no. 3, pp. 275-80, 1989.
[110]  Y. Sonoda, K. Matsumoto, Y. Kakuto, Y. Nishino, T. Kumabe, T. Tominaga, R. Katakura, Primary CNS lymphoma treated with combined intra-arterial ACNU and radiotherapy, Acta Neurochir (Wien), Vol. 149, no. 11, pp. 1183-9. 2007.
[111]  R.L. Heideman, R.J. Packer, G.H. Reaman, J.C. Allen, B. Lange, M.E. Horowitz, S.M. Steinberg, A. Gillespie, E.H. Kovnar, F.M. Balis, et al, A phase II evaluation of thiotepa in pediatric central nervous system malignancies, Cancer, Vol. 72, no.1, pp. 271-5, 1993.
[112]  H.J. Thiel, F. Hammersen, R. Sauer, Histochemical and ultrastructural studies on the anti-edema and radiation-protective effects of 0-(beta-hydroxyethyl)-rutosides in the rat brain after single-dose irradiation. 1. Electron microscopy study of terminal blood circulation, Strahlenther Onkol, Vol.164, no. 9, pp. 544-52, 1988.
[113]  A. Ernst-Stecken, I. Jeske, A. Hess, F. Rödel, O. Ganslandt, G. Grabenbauer, R. Sauer, K. Brune, I. Blümcke, Hypofractionated stereotactic radiotherapy to the rat hippocampus. Determination of dose response and tolerance, Strahlenther Onkol, Vol. 183, no.8, pp. 440-6, 2007.
[114]  E.C. Kaal, C.J. Vecht, CNS complications of breast cancer: current and emerging treatment options, CNS Drugs, Vol. 21, no. 7, pp. 559-79, 2007.
[115]  S. Garg, W. Wang, B.G. Prabath, M. Boerma, J. Wang, D. Zhou, M. Hauer-Jensen, Bone marrow transplantation helps restore the intestinal mucosal barrier after total body irradiation in mice, Radiat Res. Vol. 181, no.3, pp. 229-39, 2014.
[116]  J.Jeong, H. Baek, Y.J.Kim, Y. Choi, H. Lee, E. Lee, E.S. Kim, J.H., Hah, T.K Kwon, I.J. Choi, H Kwon, Human Salivary gland stem cells ameliorate hyposalivation of radiation-damaged rat salivary glands, Exp Mol Med.; 45:e58. 2013.
[117]  C.H. Shao, S.L. Chen, T.F. Dong, H. Chai, Y. Yu, L.Deng, Y. Wang, F. Cheng, Transplantation of bone marrow-derived mesenchymal stem cells after regional hepatic irradiation ameliorates thioacetamide- induced liver fibrosis in rats, J Surg Res. Vol.186, no.1:, pp. 408-16, 2014.
[118]  M. Moroni, T.B. Elliott, N.E. Deutz, C.H. Olsen, R. Owens, C. Christensen, E.D. Lombardini, Whitnall, Accelerated hematopoietic syndrome after radiation doses bridging hematopoietic(H-ARS) and gastrointestinal (GI-ARS) acute radiation syndrome: early hematological changes and systemic inflammatory response syndrome in minipig, Int J Radiat Biol. Vol. 90, no. 5, pp. 363-72, 2014.
[119]  D.J. Martinel Lamas, E. Carabajal, J.P. Prestifilippo, L. Rossi, J.C. Elverdin, S. Merani, R.M. Bergoc, E.S. Rivera, V.A., Protection of radiation- induced damage to the hematopoietic system, small intestine and salivary glands in rats by JNJ7777120 compound, a histamine H4 ligand, PLoS One. Vol. 8, no. 7, 2013.
[120]  L. Egea, C.S. McAllister, O. Lakhdari, I. Minev, S.Shenouda, M.F. Kagnoff, GM-CSF produced by nonhematopoietic cells is required for early epithelial cell proliferation and repair of injured colonic mucosa, J Immunol. Vol.190, no. 4, pp. 1702-13, 2013.
[121]  S.P. Ghosh, S. Kulkarni,M.W. Perkins, K. Hieber, R.L. Pessu, K. Gambles, M. Maniar, T.C. Kao, T.M. Seed, K.S. Kumar, Amelioration of radiation- induced hematopoietic and gastrointestinal damage by Ex-RAD(R) in mice, J Radiat Res. Vol. 53, no. 4, pp. 526-36, 2012.
[122]  S. Corbacioglu, N. Kernan, L. Lehmann, J. Brochstein, C. Revta, S. Grupp, P. Martin, P.G. Richardson, Defibrotide for the treatment of hepatic veno-occlusive disease in children after hematopoietic stem cell transplantation, Expert Rev Hematol. Vol.5, no. 3, pp. 291-302, 2012.
[123]  A.F. Burnett, P. G.Biju, H. Lui, M. Hauer-Jensen, Oral interleukin 11 as a countermeasure to lethal total-body irradiation in a murine model, Radiat Res. Vol.180, no.6, pp. 595-602, 2013.
[124]  C. Linard, E. Busson, V. Holler, C.Strup-Perrot, J.V. Lacave- Lapalun, B. Lhomme, M. Prat, P.Devauchelle, J.C. Sabourin, J.M. Simon, M. Bonneau, J.J. Lataillade, M. Benderitter, Repeated autologous bone marrow derived mesenchymal stem cell injections imporove radiation-iduced proctitis in pigs, Stem Cells Transl Med. Vol. 2, no 11, pp. 916-27, 2013.
[125]  M. Ensminger, L. Iloff, C. Ebel, T. Nikolova, B. Kaina, M. Lӧbrich, DNA breaks and chromosomal aberrations arise when replication meets base excision repair, J Cell Biol.Vol. 206, no.1, pp. 29-43, 2014.
[126]  A. Urushibara, S. Kodama, A. Yokoya, Induction of genetic instability by transfer of a UV-A- irradiated chromosome,” Mutat Res Genet Toxicol Environ Mutagen. Vol. 766, pp. 29-34, 2014.
[127]  M.R. Puumalainen, D. Lessel, P. Rüthemann, N.Kaczmarek, K. Bachmann, K.Ramadan, H.Naegeli, Chromatin retention of DNA damage sensors DDB2 and XPC through loss of p97 segregase causes genotoxicity, Nat Commun, 2014.
[128]  A.L. Holmes, K. Joyce, H. Xie, C. Falank, J.M. Hinz, J.P. Sr Wise, The impact of homologous recombination repair deficiency on depleted uranium clastogenicity in Chinese hamster ovary cells: XRCC3 protects cells from chromosome aberrations, but increases chromosome fragmentation, Mutat Res Fundam Mol Mech Mutagen. Vol. 762, pp. 1-9, 2014.
[129]  H.J. Shim, E.M. Lee, L.D. Nguyen, J.Shim, Y.H. Song, High-dose irradiation induces cell cycle arrest, apoptosis, and developmental defects during Drosophila oogenesis, PLoS One. Vol. 9, no.2, 2014.
[130]  E.J. Blaikley, H. Tinline-Purvis, T.R. Kasparek, S. Marguerat, S.Sarkar, L. Hulme, S. Hussey, B.Y. Wee, R.S.Deegan, C.A. Walker, C.C. Pai, J. Bähler, T. Nakagawa, T.C. Humphrey, The DNA damage checkpoint pathway promotes extensive resection and nucleotide synthesis to facilitate homologous recombination repair and genome stability in fission yeast, Nucleic Acids Res.Vol. 42, no.9, pp. 5644-56, 2014.
[131]  X. Hu, X. Wu, Y. Huang, Q.Tong, S.Takeda, Y. Qing, Berberine induces double- strand DNA breaks in Rev3 deficient cells, Mol Med Rep. Vol. 9, no. 5, pp. 1883-8, 2014.
[132]  S.Havaki, A. Kotsinas, E. Chronopoulos, D. Kletsas, A. Georgakilas, V.G. Gorgoulis, The role of oxidative DNA damage in radiationinduced bystander effect, Cancer Lett, 2014.
[133]  T.A. Tengku Ahmad, F.Jaafar, Z. Jubri, K.Abdul Rahim, N.F. Rajab, S. Makpol, Gelam honey attenuated radiation- induced cell death in human diploid fibroblasts by promoting cell cycle progression and inhibiting apoptosis, BMC Complement Altern Med.Vol.14, pp. 108, 2014.
[134]  A.Leskovac, S.Petrovic, M.Guc-Scekic, D.Vujic, G. Joksic, Radiation- induced mitotic catastrophe in FANCD2 primary fibroblasts, Int J Radiat Biol. Vol. 90, no.5, pp. 373-81, 2014.
[135]  M.V. Bakhmutsky, M.C. Joiner, T.B.Jones, J.D.Tucker, Differences in cytogenetic sensitivity to ionizing radiation in newborns and adults, Radiat Res. Vol. 181, no. 6, pp. 605-16, 2014.
[136]  L.E. Wang, C.Li, P.Xiong, J.E. Gershenwald, V.G. Prieto, M.Duvic, J.E.Lee, E.A.Grimm, T.C. Hsu, Q.Wei, 4-Nitroquinoline-1-oxide- induced mutagen sensitivity and risk of cutaneous melanoma: a case-control analysis, Melanoma Res. 2014. Melanoma Res. 2016 Apr; 26(2): 181-7.
[137]  C.H. Ramaekers, T. van den Beucken, R.G. Bristow, R.K. Chiu, D. Durocher, B.G. Wouters, RNF8-independent Lys63 poly- ubiquitylation prevents genomic instability in response to replication-associated DNA damage, PLoS One. Vol. 9, no. 2,: e89997, 2014.
[138]  M.R. Duan, M.J. Smerdon, Histone H3 lysine 14 (H3K14) acetylation facilitates DNA repair in a positioned nucleosome by stabilizing the binding of the chromatin Remodeler RSC (Remodels Structure of Chromatin), .J Biol Chem. Vol. 289, no.12, pp. 8353-63, 2014.
[139]  A. Pérez-Sánchez, E. Barrajón-Catalán, N. Caturla, J.Castillo, O. Benavente-García, M.Alcaraz, V. Micol, Protective effects of citrus and rosemary extracts on UV- induceddamage in skin cell model and human volunteers, J Photochem Photobiol B.Vol. 136, pp. 12-8, 2014.
[140]  M.Höckel, B.Hentschel, L.C.Horn, Association between developmental steps in the organogenesis of the uterine cervix and locoregional progression of cervical cancer: a prospective clinicopathological analysis, Lancet Oncol, Vol. 15, no.4, pp. 445-56, 2014.
[141]  C. Lavelle, N. Foray, Chromatin structure and radiation-induced DNA damage: from structural biology to radiobiology, Int J Biochem Cell Biol.Vol. 49, pp. 84-97, 2014.
[142]  S. Dasdag, M. Taş, M.Z. Akdag, K. Yegin, Effect of long-term exposure of 2.4 GHz radiofrequency radiation emitted from Wi-Fi equipment on testes functions, Electromagn Biol Med. 2015 Mar; 34(1): 37-42.
[143]  K. Liu, G. Zhang, Z. Wang, Y. Liu, J. Dong, X. Dong, J. Liu, J. Cao, L. Ao, S. Zhang, The protective effect of autophagy on mouse spermatocyte derived cells exposure to 1800MHz radiofrequency electromagnetic radiation, Toxicol Lett., Vol. 228, no.3, pp. 216-24, 2014.
[144]  S. Kumar, J. Behari, R. Sisodia, Influence of electromagnetic fields on reproductive system of male rats, Int J Radiat Biol, Vol. 89, no.3, pp. 147-54, 2013.
[145]  S.S.Li, Z.Y. Zhang, C.J. Yang, H.Y. Lian, P. Cai, Gene expression and reproductive abilities of male Drosophila melanogaster subjected to ELF-EMF exposure, Mutat Res Vol. 758, no. 1-2, pp. 95-103, 2013.
[146]  P.E. Daly, M.T. Dunne, C.M.. O'Shea, M.A Finn, J.G. Armstrong, The effect of short term neo-adjuvant androgen deprivation on erectile function in patients treated with external beam radiotherapy for localised prostate cancer: an analysis of the 4- versus 8- month randomised trial (Irish Clinical Oncology Research Group 97-01), Radiother Oncol, Vol.104, no.1, pp. 96-102, 2012.
[147]  L.H. Margaritis, A.K.Manta, K.D. Kokkaliaris, C.D. Kokkaliaris, D.Schiza, K. Alimisis, G.Barkas, E.Georgiou, O.Giannakopoulou, I. Kollia, G.Kontogianni, A.Kourouzidou, A.Myari, F. Roumelioti, A. Skouroliakou, V. Sykioti, G. Varda, K. Xenos, K.Ziomas, Drosophila oogenesis as a bio- marker responding to EMF sources, Electromagn Biol Med. Electromagn Biol Med. 33(3): 165-89. 2014.
[148]  D. llner, H. Scherthan, Ionizing irradiation- induced radical stress stalls live meiotic chromosome movements by altering the actin cytoskeleton, Proc Natl Acad Sci U S A, Vol. 110, no.40, pp. 16027-32, 2013.
[149]  C.L.Chen, H.C. Kuo, S.Y. Tung, P.W. Hsu, C.L. Wang, C.Seibel, M. Schmo ll, R.S. Chen, T.F.Wang, Blue light acts as a double-edged sword in regulating sexual development of Hypocrea jecorina (Trichoderma reesei), PLoS One, Vol.7, no.9, pp. 44969, 2012.
[150]  J. Zyla, P. Finnon, R. Bulman, S. Bouffler, C. Badie, J. Polanska, Seeking genetic signature of radiosensitivity - a novel method for data analysis in case of small sample sizes, Theor Biol Med Model. Vol. 11, 1:S2, 2014.
[151]  L. Rivina, M. Davoren, R.H. Schiest, Radiation- induced myeloid leukemia in murine models, Hum Genomics. Vol. 8, no.1, pp. 13, 2014.
[152]  L. Tong, Y. Wang, Y. Zhou, X. Zheng, H. Liu, J. Sun, X. Li, Yan XSurgical management of giant secondary malignant fibrous histiocytoma following radiotherapy for nasopharyngeal carcinoma: A case report and literature review. Oncol Lett. Vol. 8, no.1, pp. 72-76, 2014.
[153]  V.N. Anisimov, I.A. Vinogradova, A.V. Bukalev, I.G.Popovich, M.A. Zabezhinskiĭ, A.V.Panchenko, M.L. Tyndyk, M.N.Iurova , Light- induced disruption of the circadian clock and risk of malignant tumors in laboratory animals: state of the problem. Vopr Onkol. Vol. 60, no.2, pp. 15-27, 2014.
[154]  C.M.Wright, T. Dan, A.P. Dicker, N.L.Simone, “microRNAs: The Short Link between Cancer and RT- induced DNA Damage Response,” Front Oncol.Vol. 4, pp. 133, 2014.
[155]  Yao K, Chen H, Liu K, Langfald A, Yang G, Zhang Y, Yu DH, Kim MO, Lee MH, Li H, Bae KB, Kim HG, Ma WY, Bode AM, Dong Z, Dong Z. msk1 to suppress ultraviolet radiation induced skin cancer Kaempferol targets RSK2 and MSK1 to suppress UV radiation-induced skin cancer. Cancer Prev Res (Phila).; 7(9): 958-67. 2014.
[156]  Bespalov VG, Alexandrov VA, Semenov AL, Kovan' Ko EG, Ivanov SD. Anticarcinogenic activity of alpha-difluoromethylornithine, ginseng, eleutherococcus, and leuzea on radiation-induced carcinogenesis in female rats. Int J Radiat Biol. 2014 Dec; 90(12):1191-200..
[157]  A.A. Chishti, C. Baumstark-Khan, C.E. Hellweg, G. Reitz, Imaging of nuclear factor κB activation induced by ionizing radiation in human embryonic kidney (HEK) cells, Radiat Environ Biophys. Vol. 53, no.3, pp. 599-610, 2014.
[158]  I. Szumiel, Ionising radiation- induced oxidative stress, epigenetic changes and genomic instability: the pivotal role of mitochondria,” Int J Radiat Biol. pp. 1-55, 2014.
[159]  V. Chauhan, M. Howland, Gene expression responses in human lung fibroblasts exposed to alpha particle radiation,” Toxicol In Vitro. Vol. 28, no.7, pp. 1222-9, 2014.
[160]  K.S. Choi, J.K.Kundu, K.S. Chun, H.K. Na, Y.J.Surh, Rutin inhibits UVB radiation- induced expression of COX-2 and iNOS in hairless mouse skin: p38 MAP kinase and JNK as potential targets,” Arch Biochem Biophys, 2014.
[161]  Yu Z, Schulmeister K, Talebizadeh N, Kronschläger M, Söderberg PG. 1090 nm infrared radiation at close to threshold dose induces cataract with a time delay, Acta Ophthalmol. 2015 Mar; 93(2): e118-22.
[162]  Meyer LM, Wegener AR, Holz FG, Kronschläger M, Bergmanson JP, Soderberg PG. Ultrastructure of UVR-B- induced cataract and repair visualized with electron microscopy, Acta Ophthalmol. 92(7): 635-43. 2014.
[163]  T.L. Fernandez, DR Van Lonkhuyzen, R.A. Dawson, M.G. Kimlin, Z. Upton, In Vitro Investigations on the Effect of Dermal Fibroblasts on Keratinocyte Responses to Ultraviolet B Radiation, Photochem Photobiol, Photochem Photobiol. 90(6): 1332-9. 2014.
[164]  A.M. Snijders, B.J. Mannion, S.G. Leung, S.C. Moon, A. Kronenberg, C.Wiese, Micronucleus formation in human keratinocytes is dependent on radiation quality and tissue architecture, Environ Mol Mutagen. 56(1): 22-31. 2014.
[165]  Simone BA, Ly D, Savage JE, Hewitt SM, Dan TD, Ylaya K, Shankavaram U, Lim M, Jin L, Camphausen K, Mitchell JB, Simone NL. microRNA alterations driving acute and late stages of radiation-induced fibrosis in a murine skinmodel. Int J Radiat Oncol Biol Phys. 90(1): 44-52
[166]  F. Specchio, I. Carboni, G. Cannarozzo, F.Tamburi, E. Dattola, S. Nisticò, Excimer UV radiation in dermatology.Int J Immunopathol Pharmacol, Vol. 27, no.2, pp. 287-9, 2014.
[167]  D. Riccobono, F. Forcheron, D. Agay, H. Scherthan, V. Meineke, M. Drouet, Transient gene therapy to treat cutaneous radiation syndrome: development in a minipig model, Health Phys. Vol. 106, no. 6, pp. 713-9, 2014.
[168]  C.C. Lin, Y.S. Chiang, C.C. Lung, Effect of Infrared-C Radiation on Skin Temperature, Electrodermal Conductance and Pain in Hemiparetic Stroke Patients, Int J Radiat Biol, Vol. 3, pp. 1-36, 2014.
[169]  J.X. Zhou, G.R. Ding, J. Zhang, Y.C. Zhou, Y.J. Zhang, G.Z. Guo, Detrimental effect of electromagnetic pulse exposure on permeability of in vitro blood-brain-barrier model, Biomed Environ Sci, Vol.26, no.2, pp. 128-37. 2013
[170]  H.Yoshino, K.Chiba, T. Saitoh, I. Kashiwakura, Ionizing radiation affects the expression of Toll- like receptors 2 and 4 in human monocytic cells through c-Jun N-terminal kinase activation, J Radiat Res. J Radiat Res. 55(5): 876-84. 2014.
[171]  P.C. Chu, W.Y. Chai, H.Y. Hsieh, J.J. Wang, S.P. Wey, C.Y. Huang, K.C. Wei, H.L. Liu, Pharmacodynamic analysis of magnetic resonance imaging- monitored focused ultrasound-induced blood-brain barrier opening for drug delivery to brain tumors, Biomed Res Int, Vol. 2013, pp. 627496. 2013.
[172]  M. Reinhard, A. Hetzel, S. Krüger, S. Kretzer, J.Talazko, S. Ziyeh, J. Weber, T. Els, Blood-brain barrier disruption by low- frequency ultrasound, Stroke, Vol. 37, no. 6, pp. 1546-8. 2006.
[173]  W. Haude, Influence of ultrasonics on permeability of blood-brain barrier, Acta Biol Med Ger, Vol. 2, no.2, pp. 185-95, 1959.
[174]  Jr H.T. Ballantine, T.F. Hueter, W.J. Naita, D.M. Sosa, Focal destruction of nervous tissue by focused ultrasound: biophysical factors influencing its application, J Exp Med, Vol. 104, no. 3, pp. 337-60, 1956.
[175]  F.Y. Yang, S.C. Horng, Chemotherapy of glioblastoma by targeted liposomal platinum compounds with focused ultrasound, Conf Proc IEEE Eng Med Biol Soc, Vol. 2013, pp. 6289-92. 2013.
[176]  McCabe JT, Moratz C, Liu Y, Burton E, Morgan A, Budinich C, Lowe D, Rosenberger J, Chen H, Liu J, Myers M. Application of high-intensity focused ultrasound to the study of mild traumatic brain injury. Ultrasound Med Biol. 40(5): 965-78. 2014.
[177]  Yang FY, Chen YW, Chou FI, Yen SH, Lin YL, Wong TT. Boron neutron capture therapy for glioblastoma multiforme: enhanced drug delivery and antitumor effect following blood-brain barrier disruption induced by focused ultrasound. Future Oncol. 8(10): 1361-9. 2012.
[178]  Treat LH, McDannold N, Zhang Y, Vykhodtseva N, Hynynen K. Improved anti-tumor effect of liposomal doxorubicin after targeted blood-brain barrier disruption by MRI-guided focused ultrasound in rat glioma. 38(10): 1716-25. 2012.
[179]  Y. Ji, D. Walstad, J.T. Brown, S.K. Powers, Interstitial photoradiation injury of normal brain, Lasers Surg Med ; Vol.12, no. 4, pp. 425-31, 1992.
[180]  D.X.Qin, R.Zheng, J.Tang, J.X. Li, Y.H. Hu, Influence of radiation on the blood- brain barrier and optimum time of chemotherapy, Int J Radiat Oncol Biol Phys ;Vol. 19, no.6, pp. 1507-10, 1990.
[181]  M. Kiessling, E. Herchenhan, H.R. Eggert, Cerebrovascular and metabolic effects on the rat brain of focal Nd:YAG laser irradiation, J Neurosurg, Vol. 73, no. 6, pp. 909-17, 1990.
[182]  T. Sakaki, S.Tsunoda, K. Kyoi, S. Utsumi, P.W. Ascher, L.M. Auer, The effect of neodymium yttrium aluminum garment laser on the cerebral blood vessel and blood brain barrier, No Shinkei Geka, Vol.17, no. 7, pp. 641-6, 1989.
[183]  R. Martiniuk, J.A. Bauer, J.D. McKean, J. Tulip, B.W. Mielke, New long-wavelength Nd:YAG laser at 1.44 micron: effect on brain, J Neurosurg, Vol.70, no.2, pp. 249-56, 1989.
[184]  S.H. Pearlman, P.Rubin, H.C. White, S.J. Wiegand, D.M. Gash, Fetal hypothalamic transplants into brain irradiated rats: graft morphometry and host behavioral responses, Int J Radiat Oncol Biol Phys, Vol.19, no.2, pp. 293-300, 1990.
[185]  M.L. Griem, Robotewskyj A, Nagel RH, Potential vascular damage from radiation in the space environment, Adv Space Res.Vol. 14, no.10, pp. 555-63, 1994.
[186]  W.D. Dietrich, R. Prado, B.D. Watson, H. Nakayama, Middle cerebral artery thrombosis: acute blood-brain barrier consequences, J Neuropathol Exp Neurol, Vol. 47, no.4, pp. 443-51, 1988.
[187]  A.J. Storm, A.J. van der Kogel, K. Nooter, Effect of X- irradiation on the pharmacokinetics of methotrexate in rats: alteration of the blood-brain barrier, Eur J Cancer Clin Oncol, Vol. 21, no. 6, pp. 759-64, 1985.
[188]  Remler MP, Marcussen WH.; The blood-brain barrier lesion and the systemic convulsant model of epilepsy. Epilepsia. 25(5): 574-7. 1984
[189]  S. Ramanan, W. Zhao, D.R. Riddle, M.E. Robbins, Role of PPARs in Radiation- Induced Brain Injury, PPAR Res.; Vol. 2010, pp. 234975, 2010.
[190]  G. Streffer C, Konermann, Proceedings: Role of CNS in radiation-protective effect of 5-hydroxytryptamine in mice, Z Klin Chem Klin Biochem,Vol. 10, no. 4, pp. 181,1972.
[191]  G.T. Gobbel, L.J. Marton, K. Lamborn, T.M. Seilhan, J.R. Fike, Modification of radiation- induced brain injury by alpha-difluoromethylornithine, Radiat Res, Vol. 128, no.3, pp. 306-15, 1991.
[192]  S.Hornsey, R. Myers, T. Jenkinson, The reduction of radiation damage to the spinal cord by post- irradiation administration of vasoactive drugs, Int J Radiat Oncol Biol Phys.; Vol.18, no. 6, pp. 1437-42, 1990.
[193]  P.W. Sperduto, M. Wang, H.I. Robins, M.C. Schell, M. Werner-Wasik, R. Komaki, L. Souhami, M.K. Buyyounouski, D. Khuntia, W. Demas, S.A. Shah, L.A. Nedzi, G. Perry, J.H. Suh, M.P.Mehta, A phase 3 trial of whole brainradiation therapy and stereotactic radiosurgery alone versus WBRT and SRS with temozolomide or erlotinib for non-small cell lung cancer and 1 to 3 brain metastases: Radiation Therapy Oncology Group 0320, Int J Radiat Oncol Biol Phys.; Vol.85,no.5, pp. 1312-8.2013.
[194]  O. Muratore, S. Saitta, G. Mallarini, P. Corvisiero, M. Sanzone, Elimination kinetics of iopamidol, a new water soluble nonionic radiographic contrast medium, analyzed by radioactivation, Experientia.;Vol.39, no.1, pp. 119-21, 1983.
[195]  M.A. Azmin, A.T. Florence, R.M. Handjani- Vila, J.F.Stuart, G. Vanlerberghe, J.S. Whittaker, The effect of non- ionic surfactant vesicle (niosome) entrapment on the absorption and distribution of methotrexate in mice, J Pharm Pharmacol.;Vol. 37, no.4, pp. 237-42, 1985.
[196]  C.Blomstrand, B. Johansson, B. Rosengren, Dexamethasone effect on blood-brain barrier damage caused by acute hypertension in x- irradiated rabbits, Acta Neurol Scand.;Vol. 52, no.4, pp. 331-4, 1975.
[197]  R.Osieka, M. Bamberg, R. Pfeiffer, P. Glatte, E. Scherer, C.G. Schmidt, Effect of antineoplastic agents and ionizing radiation on a human testicular cancer heterograft,”Strahlentherapie, Vol. 161, no.1, pp. 35-46, 1985.
[198]  S. Gronier, V. Bourg, M. Frenay, M. Cohen, L. Mondot, P. Thomas, C. Lebrun, Bevacizumab for the treatment of cerebral radionecrosis, Rev Neurol (Paris), Vol. 167, no. 4, pp. 331-6. 2011.
[199]  L. Du, R. Kayali, C. Bertoni, F. Fike, H. Hu, P.L. Iversen, R.A. Gatti, Arginine-rich cell-penetrating peptide dramatically enhances AMO- mediated ATM aberrant splicing correction and enables delivery to brain and cerebellum, Hum Mol Genet, Vol. 20, no. 16, pp. 3151-60. 2011.
[200]  R.D. Pearlstein, Y. Higuchi, M. Moldovan, K. Johnson, S. Fukuda, D.S. Gridley, J.D. Crapo, D.S. Warner, J.M. Slater, Metalloporphyrin antioxidants ameliorate normal tissue radiation damage in rat brain, Int J Radiat Biol, Vol. 86, no. 2, pp. 145-63. 2010.
[201]  S. Watanabe, M. Fujita, M. Ishihara, S. Tachibana, Y. Yamamoto, T. Kaji, T. Kawauchi, Y. Kanatani, Protective effect of inhalation of hydrogen gas on radiation- induced dermatitis and skin injury in rats, J Radiat Res. 2014.
[202]  Hu LS, Baxter LC, Pinnaduwage DS, Paine TL, Karis JP, Feuerstein BG, Schmainda KM, Dueck AC, Debbins J, Smith KA, Nakaji P, Eschbacher JM, Coons SW, Heiserman JE. Optimized preload leakage-correction methods to improve the diagnostic accuracy of dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging in posttreatment gliomas. AJNR Am J Neuroradiol. (1):40-8. 2010.
[203]  Miura Y, Anzai K, Ueda JI, Ozawa T. Pathophysiological significance of in vivo ESR signal decay in brain damage caused by X-irradiation. Radiation effect on nitroxyl decay of a lipophilic spin probe in the head region. Biochim Biophys Acta. 16; 1525 (1-2): 167-72. 2001.
[204]  Williams JP, Kim I, Ito E, Shi W, Yue S, Siu LL, Waldron J, O'Sullivan B, Yip KW, Liu FF. Pre-clinical characterization of Dacomitinib (PF-00299804), an irreversible pan-ErbB inhibitor, combined with ionizing radiation for head and neck squamous cell carcinoma. PLoS One. 2014 May 22; 9(5): e98557.
[205]  Ossetrova NI, Condliffe DP, Ney PH, Krasnopolsky K, Hieber KP, Rahman A, Sandgren DJ. Early-response biomarkers for assessment of radiation exposure in a mouse total-body irradiation model. Health Phys. 106(6): 772-86. 2014.
[206]  S. Bae, K. Kim, H.J. Cha, Y. Choi, S.H. Shin, I.S. An, J.H. Lee, J.Y. Song, K.H. Yang, S.Y. Nam, S.An, Altered microRNA expression profiles are involved in resistance to low- dose ionizing radiation in the absence of BMI1 in human dermal fibroblasts, Int J Oncol. 45(4): 1618-28. 2014.
[207]  E. Fernández-García, Skin protection against UV light by dietary antioxidants, Food Funct, 2014. Food Funct. 5(9): 1994-2003. 2014.
[208]  A. O'Donovan, M. Coleman, R. Harris, P. Herst, Prophylaxis and management of acute radiation- induced skin toxicity: a survey of practice across Europe and the USA, Eur J Cancer Care (Engl), 2014. Eur J Cancer Care (Engl). 24(3): 425-35. 2015.
[209]  Kaal EC, Vecht CJ. CNS complications of breast cancer: current and emerging treatment options. CNS Drugs. 2007; 21(7): 559-79.
[210]  Mogollon JA, Boivin C, Lemieux S, Blanchet C, Claveau J, Dodin S. Chocolate flavanols and skin photoprotection: a parallel, double-blind, randomized clinical trial 13: 66. 2014.
[211]  S. Soleymanifard, M.T. Toossi, M. Khosroabadi, A.V. Noghreiyan, S. Shahidsales, F.V.Tabrizi, Assessment of skin dose modification caused by application of immobilizing cast in head and neck radiotherapy,”Australas Phys Eng Sci Med. 2014. Australas Phys Eng Sci Med. 37(3): 535-40. 2014.
[212]  S. Taysi, Z.K. Abdulrahman, S.Okumus, E. Demir, T. Demir, M. Akan, E. Saricicek, V. Saricicek, A. Aksoy, M. Tarakcioglu, The radioprotective effect of Nigella sativa on nitrosative stress in lens tissue in radiation- induced cataract in rat, Cutan Ocul Toxicol. 34(2): 101-6. 2015.
[213]  C.E. Stubbe, M. Valero, Complementary strategies for the management of radiation therapy side effects, J Adv Pract Oncol. 4(4): 219-31. 2013.
[214]  G. Zu, Y. Dou, Q. Tian, H. Wang, W. Zhao, F. Li, Role and mechanism of radiological protection cream in treating radiation dermatitis in rats, J Tradit Chin Med, Vol. 34, no.3, pp. 329-37, 2014.