Journal of Environment Pollution and Human Health
ISSN (Print): 2334-3397 ISSN (Online): 2334-3494 Website: http://www.sciepub.com/journal/jephh Editor-in-chief: Dibyendu Banerjee
Open Access
Journal Browser
Go
Journal of Environment Pollution and Human Health. 2015, 3(2), 31-38
DOI: 10.12691/jephh-3-2-2
Open AccessArticle

Using Chemical Modeling to Asses Water Quality in the Raigón Aquifer System in Southern Uruguay

Julia Torres1, , Lorena Gonzatto1, César Goso2, José Luis Fernández-Turiel3, Marta Rejas3, Maite García-Vallés4, Carlos Kremer1 and Eduardo Kremer1

1Cátedra de Química Inorgánica, DEC, Facultad de Química, Montevideo, Uruguay

2Instituto de Ciencias Geológicas, Facultad de Ciencias, Montevideo, Uruguay

3Instituto de Ciencias de la Tierra Jaume Almera, labGEOTOP, CSIC, Barcelona, España

4Facultat de Geologia, Universitat de Barcelona

Pub. Date: May 26, 2015

Cite this paper:
Julia Torres, Lorena Gonzatto, César Goso, José Luis Fernández-Turiel, Marta Rejas, Maite García-Vallés, Carlos Kremer and Eduardo Kremer. Using Chemical Modeling to Asses Water Quality in the Raigón Aquifer System in Southern Uruguay. Journal of Environment Pollution and Human Health. 2015; 3(2):31-38. doi: 10.12691/jephh-3-2-2

Abstract

The Raigón aquifer is an important groundwater system in southern Uruguay. The increasing use of groundwater resources in the last decades has provoked changes in the concentration of many elements which are strongly related to anthropogenic pollution sources. Concentration levels are useful to detect changes in reservoir status but it is also necessary to analyze their chemical significance in order to make an accurate assessment of the sources of contamination and the causes of changes. In this work we use the available thermodynamic data to calculate chemical speciation on these groundwater samples. Trace elements present as anions, in particular Se and Mo, are especially focused to show the chemical modeling possibilities. Both elements form anionic species, predominantly MoO42- and SeO42-. Results show that these anions interact in solution and are greatly influenced by the concentration of the abundant calcium ion. Localized changes in pH can strongly affect the situation. The same is observed with the pE parameter, but only in the case of Se. Chemical speciation of trace elements is in general highly dependent on pH, pE and concentration of major elements. In consequence, for a fixed analytical total concentration, these parameters can markedly change the situation, affecting the mobility, the bioavailability and environmental fate of these elements. The strategy employed in this work can also be extended to the study of many other environmental water scenarios.

Keywords:
Raigón aquifer system groundwater chemical modeling speciation trace elements

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  J. Bossi, Geología del Uruguay, Departamento de Publicaciones, Universidad de la República, Montevideo, 1966.
 
[2]  A. Manganelli, C. Goso, R. Guerequiz, J. L. Fernández Turiel, M. García-Vallés, D. Gimeno, C. Pérez, “Groundwater arsenic distribution in South-western Uruguay”, Environmental Geology 53, 827-834, March 2007.
 
[3]  N. Mañay, “Developing Medical Geology in Uruguay: A Review”, International Journal of Environmental Research Public Health, 7, 1963-1969, April 2010.
 
[4]  I. Bodek, W. J. Lyman, W. F. Feehl, D. H. Rosenblatt, Environmental Inorganic Chemistry, Pergamon Press, New York, 1988.
 
[5]  H. D. Holland, K.K. Turekian (Executive Editors), Treatise on Geochemistry, Elsevier Ltd., 2003, Volume 5, section 5.04.
 
[6]  P.A. Cox, The Elements on Earth: Inorganic Chemistry in the Envrironment, Oxford University Press, Oxford, 1995.
 
[7]  C. T. Avellán, D. Rousseau, P. Lens, “Community based approach towards water quality restoration and pollution prevention of the Flores Creeek (Uruguay)” in Integrated water resources management Karlsruhe 2010, KIT Scientific Publishing, section 2.3.
 
[8]  N. Mañay, N, C. Goso, M. Pistón, J. L. Fernández-Turiel, M. García-Vallés, M. Rejas, R. Guerequiz, “Groundwater arsenic content in Raigón aquifer system (San José, Uruguay)”, Revista. de la Sociedad Uruguaya de Geología, 18, 20-38, November 2013.
 
[9]  M. I. Bellini, L. Gutiérrez, S. Tarlera, A. Fernández Scavino, “Isolation and functional analysis of denitrifiers in an aquifer with high potential for denitrification”, Systematic and Applied Microbiology, 36, 505-516, August 2013.
 
[10]  W. Stumm, J. J. Morgan, Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters, 3rd ed., Wiley, Pasadena, 1996.
 
[11]  H. D. Holland, K.K. Turekian (Executive Editors), Treatise on Geochemistry, Elsevier Ltd., 2003, Volume 5, section 5.09.
 
[12]  W. M. Edmunds, “Geochemistry’s vital contribution to solving water resource problems”, Applied Geochemistry, 24, 1058-1073, February 2009.
 
[13]  O. Selinus (Chief Editor), Essentials of Medical Geology, Elsevier, Burlington, 2005.
 
[14]  Z. L. He, X. E. Yang, P. J. Stoffella, “Trace elements in agroecosystems and impacts on the environment”, Journal of Trace Elements in Medicine and Biology, 19, 125-140, February 2005.
 
[15]  J. E. Groenenberg, S. Lofts, “The use of assemblage models to describe trace elements partitioning, speciation and fate: a review” Environmental Toxicology and Chemistry, 33, 2181-2196, May 2014.
 
[16]  P. M. May, “JESS at thirty: Strengths, weaknesses and future needs in the modeling of chemical speciation”, Applied Geochemistry 55, 3-16, January 2015.
 
[17]  M. Filella. P. M. May, “Computer simulation of the low-molecular-weight inorganic species distribution of antimony (III) and antimony(V) in natural waters” Geochimica et Cosmochimica Acta, 67, 4013-4031, January 2003.
 
[18]  T. Cheng, K. De Schamphelaere, S. Lofts, C. Janssen, H. E. Allen, “Measurement and computation of zinc binding to natural dissolved organic matter in European surface waters” Analitica Chimica Acta, 542, 230-239, April 2005.
 
[19]  E. Tipping E, H. T. Carter, “Aluminium speciation in streams and lakes of the UK Acid Waters Monitoring Network, modelled with WHAM”, Science of the Total Environment 409, 1550-1558, February 2011.
 
[20]  J. B. Christensen, J. J. Botma, T. H. Christensen, “Complexation of Cu and Pb by DOC in polluted groundwater: A comparison of experimental data and predictions by computer speciation models (WHAM and MINTEQA2)”, Water Res 33, 3231-3238, January 1999.
 
[21]  Stability Constants Database, IUPAC 2007.
 
[22]  P. M. May, K. Murray, “JESS - a Joint Expert Speciation System”, Talanta 38, 1409-1417, June 1991.
 
[23]  J. Torres, V. Pintos, S. Domínguez, C. Kremer, E. Kremer, “Selenite and Selenate Speciation in Natural Waters: Interaction with Divalent Metal Ions”, Journal of Solution Chemistry, 39, 1-10, January 2010.
 
[24]  J. Torres, V. Pintos, L. Gonzatto, S. Domínguez, C. Kremer, E. Kremer, “Selenium chemical speciation in natural waters: Protonation and complexation behavior of selenite and selenate in the presence of environmentally relevant cations”, Chemical Geology, 288, 32-38, July 2011.
 
[25]  J. Torres, L. Gonzatto, G. Peinado, C. Kremer, E. Kremer, “Interaction of Molybdenum(VI) Oxyanions with +2 Metal Cations”, Journal of Solution Chemistry, 43, 1687-1700, October 2014.
 
[26]  Visual MINTEQ ver. 3.1 (released 2014) J. P. Gustafsson
 
[27]  L. Alderighi, P. Gans, A. Ienco, D. Peters, A. Sabatini. A. Vacca., “Hyperquad simulation and speciation (HySS): a utility program for the investigation of equilibria involving soluble and partially soluble species”, Coordination Chemistry Reviews, 184, 311-318, 1999.
 
[28]  K. Raju, G. Atkinson, “The thermodynamics of “scale” mineral solubilities. 3. Calcium sulfate in aqueous NaCl”, Journal of Chemical and Engeneering Data, 35, 361-367, 1990.
 
[29]  C. Paige, W. Kornicker, O. Hileman, “Solution equilibria for uranium ore processing: The BaSO4-H2SO4-H2O system and the BaSO4-H2SO4-H2O system”, Geochimica et Cosmochimica Acta, 62, 15-23, 1998.
 
[30]  K. Tanji, L. Valoppi, “Groundwater Contamination by Trace Elements”, Agriculture, Ecosystems and Environment, 26, 229-274, June 1989.
 
[31]  J. J. Cruywagen, A. G. Draaijer, J. B. B. Heyns, E. A. Rohwer, “Molybdenum(VI) equilibria in different ionic media. Formation constants and thermodynamic quantities”, Inorganica Chimica Acta, 331, 322-329, January 2002.
 
[32]  M. E. Essington, “Formation of calcium and magnesium molybdate complexes un dilute aqueous solutions”, Soil Science Society of America Journal, 56, 1124-1127, July 1992.