Journal of Cancer Research and Treatment
ISSN (Print): 2374-1996 ISSN (Online): 2374-2003 Website: Editor-in-chief: Jean Rommelaere
Open Access
Journal Browser
Journal of Cancer Research and Treatment. 2018, 6(3), 74-79
DOI: 10.12691/jcrt-6-3-3
Open AccessArticle

Inhibition of the Inositol Requiring Protein 1α- X-Box Binding Protein-1 Pathway as a Promising Therapeutic Target for Human Prostate Cancer

Ahmad M. Khalil1, , Ahmad Y. Alghadi1, Rahaf M. T. Shahen1, Jehad W. Elasad2 and Khaleel I. Jawasreh3

1Department of Biological Sciences, Yarmouk University, Irbid, Jordan

2Department of Applied Biology, Jordan University of Science and Technology, Irbid, Jordan

3Department of Animal Productions, Jordan University of Science and Technology, Irbid, Jordan

Pub. Date: August 26, 2018

Cite this paper:
Ahmad M. Khalil, Ahmad Y. Alghadi, Rahaf M. T. Shahen, Jehad W. Elasad and Khaleel I. Jawasreh. Inhibition of the Inositol Requiring Protein 1α- X-Box Binding Protein-1 Pathway as a Promising Therapeutic Target for Human Prostate Cancer. Journal of Cancer Research and Treatment. 2018; 6(3):74-79. doi: 10.12691/jcrt-6-3-3


Prostate cancer (PCa) has been associated with endoplasmic reticulum stress (ERS) which activates the inositol requiring protein 1α- X-box binding protein-1 (IREα-XBP-1) pathway. The aim of the study was to investigate the role of this pathway in three human PCa cell lines (LNCaP, PC-3, and DU-145) by evaluating the expression of XBP-1 and glucose-regulated protein 78 (GRP78) genes. The effect of two ERS inducers (Thapsigargin, Tg and tunicamycin, Tm) alone and in combination with an inhibitor of the IRE1α RNase inhibitor (STF-083010) on expression profiling was followed using Quantitative-PCR. In vitro treatment of PCa cells with ERS inducers upregulated expression of XBP-1 gene. STF-083010 inhibited IRE1α-induced splicing of the gene and increased cytotoxicity. Inhibition of IRE1α RNase activity significantly decreased expression of chaperon protein GRP78. The results confirm and extend the concept that selective targeting of IRE1α-XBP-1 pathway might be a novel therapeutic approach that curbs PCa cell progression.

ER stress GRP78 IRE1 α-XBP-1 pathway prostate cancer STF-083010 unfolded protein response

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


Figure of 4


[1]  Siegel, R.L., Miller, K.D., Jemal, A, “Cancer statistics”, CA Cancer Journal for Clinicians, 68.7-30. 2018.
[2]  Litwin, M.S., Tan, H.J, “The diagnosis and treatment of prostate cancer: A review”, JAMA, 317. 2532-2542. 2017.
[3]  Corazzari, M., Gagliardi, M., Fimia, G.M., Piacentini, M, “Endoplasmic reticulum stress, unfolded protein response, and cancer cell fate”, Frontiers in Oncology, 7.78. 2017.
[4]  Doultsinos, D., Avril, T., Lhomond, S., Dejeans, N., Guédat, P., Chevet, E, “Control of the unfolded protein response in health and disease. SLAS DISCOVERY”, Advancing Life Sciences R&D, 22 (7).787-800. 2017.
[5]  Pincus, D., Chevalier, M.W., Aragon, T., van Anken, E., Vidal, S.E., El-Samad, H, “BiP binding to the ER-stress sensor Ire1 tunes the homeostatic behavior of the unfolded protein response”, PLoS Biology, 8 (7). e1000415. 2010.
[6]  Moore, K., Hollien, J, “Ire1-mediated decay in mammalian cells relies on mRNA sequence, structure, and translational status”, Molecular Biology of the Cell, 26(16).2873-2884. 2015.
[7]  Davies, M.P., Barraclough, D.L., Stewart, C., Joyce, K.A., Eccles, R.M., Barraclough, R., Rudland, P.S., Sibson, D.R, “Expression and splicing of unfolded protein response gene XBP-1 are significantly associated with clinical outcome of endocrine-treated breast cancer”, International Journal of Cancer, 123. 85-88. 2008.
[8]  Mhaidat, N.M., Alzoubi, K.H., Abushbak, A, “X-box binding protein 1 (XBP-1) enhances colorectal cancer cell invasion”, Journal of chemotherapy, 27 (3). 167-173. 2015.
[9]  Guha, P., Kaptan, E., Gade, P., Kalvakolanu, D.V., Ahmed, H, “Tunicamycin induced endoplasmic reticulum stress promotes apoptosis of prostate cancer cells by activating mTORC1”, Oncotarget, 8 (40). 68191-68207. 2017.
[10]  Sheng, X., Arnoldussen, Y.J., Storm, M., Tesikova, M., Nenseth, H.Z., Zhao, S., Fazli, L., Rennie, P., Risberg, B., Wæhre, H., Danielsen, H., Mills, I.G., Jin, Y., Hotamisligil, G., Saatcioglu, F, “Divergent androgen regulation of unfolded protein response pathways drives prostate cancer”, EMBO Molecular Medicine, 7. 788-801. 2015.
[11]  Storm, M., Sheng, X., Arnoldussen, Y.J., Saatcioglu, F, “Prostate cancer and the unfolded protein response”, Oncotarget, 7. 54051-54066. 2016.
[12]  Wang, C., Cai, L., Liu, J., Wang, G., Li, H., Wang, X., Xu, W., Ren, M., Feng, L., Liu, P., Zhang, C, “MicroRNA-30a-5p inhibits the growth of renal cell carcinoma by modulating GRP78 expression”, Cellular Physiology and Biochemistry, 43. 2405-2419. 2017.
[13]  Niu, Z., Wang, M., Zhou, L., Yao, L., Liao, Q., Zhao, Y, “Elevated GRP78 expression is associated with poor prognosis in patients with pancreatic cancer”, Scientific Reports, 5. 16067. 2015.
[14]  Romero-Ramirez, L., Cao, H., Regalado, M.P., Kambham, N., Siemann, D., Kim, J.J., Le, Q.T., Koong, A.C, “X box-binding protein 1 regulates angiogenesis in human pancreatic adenocarcinomas”, Translational Oncology, 2. 31-38. 2009.
[15]  Ming, J., Ruan, S., Wang, M., Ye, D., Fan, N., Meng, Q., Tian, B., Huang, T, “A novel chemical, STF-083010, reverses tamoxifen-related drug resistance in breast cancer by inhibiting IRE1/XBP1”, Oncotarget, 6(38). 40692-40703. 2015.
[16]  Mimura, N., Fulciniti, M., Gorgun, G., Tai, Y.T., Cirstea, D., Santo, L., Hu, Y., Fabre, C., Minami, J., Ohguchi, H., Kiziltepe, T., Ikeda, H., Kawano, Y., French, M., Blumenthal, M., Tam, V., Kertesz, N.L., Malyankar, U.M., Hokenson, M., Pham, T., Zeng, Q., Patterson, J.B., Richardson, P.G., Munshi, N.C., Anderson, K.C, “Blockade of XBP1 splicing by inhibition of IRE1alpha promising therapeutic option in multiple myeloma”, Blood, 119. 5772-5781. 2012.
[17]  Chen, C., Zhang, X, “IRE1α XBP1 pathway promotes melanoma progression by regulating IL 6/STAT3 signaling”, Journal of Translational Medicine, 15. 42. 2017.
[18]  Auf, G., Jabouille, A., Guérit, S., Pineau, R., Delugin, M., Bouchecareilh, M, Magnin, N., Favereaux, A., Maitre, M., Gaiser, T., von Deimling, A., Czabanka, M., Vajkoczy, P., Chevet, E., Bikfalvi, A., Moenner, M, “Inositol-requiring enzyme 1α is a key regulator of angiogenesis and invasion in malignant glioma”, Proceedings of the National Academy of Sciences, 107(35). 15553-15558. 2010.
[19]  Alghadi, A.Y., Khalil, A.M., Alazab, R.S., Aldaoud, N.H., Zyoud, A. M-S,” Unique expression of the XBP1 gene correlates with human prostate cancer”, Journal of Investigative Genomics, 4(2). 00091. 2017.
[20]  Lin, Y.H., Friederichs, J., Black, M.A., Mages, J., Rosenberg, R., Guilford, P.J., Phillips, V., Thompson-Fawcett, M., Kasabov, N., Toro, T., Merrie, A.E., van Rij, A., Yoon, H.S., McCall, J.L., Siewert, J.R., Holzmann, B., Reeve, A.E, “ Multiple gene expression classifiers from different array platforms predict poor prognosis of colorectal cancer”, Clinical cancer research: an official journal of the American Association for Cancer Research, 13(2). 498-507. 2007.
[21]  Feng, Y.X., Jin, D.X., Solcol, E.S., Reinhardt, F., Miller, D.H., Gupta, P.B, “Cancer-specific PERK signaling drives invasion and metastasis through CREB3L1”, Nature Communications, 2017.
[22]  Sun, H., Lin, D-C., Guo, X., Masouleh, B.k., Gery, S., Cao, Q., Alkan, S., Ikezoe, T., Akiba, C., Paquette, R., Chien, W., Müller-Tidow, C., Jing, Y., Agelopoulos, K., Müschen, M., Koeffler, H.P, “Inhibition of IRE1α-driven pro-survival pathways is a promising therapeutic application in acute myeloid leukemia”, Oncotarget, 7 (14). 18736-18749. 2016.
[23]  Liu, Y., Hou, X., Liu, M., Yang, Z., Bi, Y., Zou, H., Wu, J., Che, H., Li, C., Wang, X., Wang, K., Zhong, C., Zhang, J., Yu, T., Bian, Q., Chai, S., Liu, H., Ai, J., Zhao, S, “XBP1 silencing decreases glioma cell viability and glycolysis possibly by inhibiting HK2 expression”, The Journal of Neuro-Oncology, 126(3). 455-462. 2016.
[24]  Pootrakul, L., Datar, R.H., Shi, S-R., Cai, J., Hawes, D., Groshen, S.G., Lee, A.S., Cote, R.J, “Expression of stress response protein Grp78 is associated with the development of castration-resistant prostate cancer”, Clinical Cancer Research, 12.5987-5993. 2006.
[25]  Daneshmand, S., Quek, M.L., Lin, E., Lee, C., Cote, R.J., Hawes, D., Cai, J., Groshen, S., Lieskovsky, G., Skinner, D.G., Lee, A.S., Pinski, J, “Glucose-regulated protein GRP78 is up-regulated in prostate cancer and correlates with recurrence and survival”, Human Pathology, 38.1547-1552. 2007.
[26]  Xing, X., Li, Y., Liu, H., Wang, L., Sun, L,” Glucose regulated protein 78 (GRP78) is overexpressed in colorectal carcinoma and regulates colorectal carcinoma cell growth and apoptosis”, Acta Histochemica, 113. 777-782. 2011;
[27]  Lee, H.K., Xiang, C., Cazacu, S., Finniss, S., Kazimirsky, G., Lemke, N., Lehman, N.L., Rempe, S.A., Mikkelsen, T., Brodieet, C, “GRP78 is overexpressed in glioblastomas and regulates glioma cell growth and apoptosis”, Neuro-Oncology, 10. 236-43. 2008.
[28]  Fu, R., Yang, P., Wu, H.L., Li, Z.W., Li, Z.Y, “GRP78 secreted by colon cancer cells facilitates cell proliferation via PI3K/Akt signaling”, Asian Pacific Journal of Cancer Prevention, 15.7245–7249. 2014.
[29]  Schmidt, B.M., Erdman Jr, J.W., Lila, M.A, “Differential effects of blueberry proanthocyanidins on androgen sensitive and insensitive human prostate cancer cell lines”, Cancer Letters, 231(2). 240-246. 2006.
[30]  Kim, K.Y., Seo, Y.K., Yu, S.N., Kim, S.H., Suh, P.G., Ji, J-H., Yu, H-S., Park, Y-M., Ahn, S-C, “Gene expression profiling from a prostate cancer PC-3 cell line treated with salinomycin predicts cell cycle arrest and endoplasmic reticulum stress”, Journal of Cancer Science and Therapy, 5. 023-030. 2012.