Journal of Cancer Research and Treatment
ISSN (Print): 2374-1996 ISSN (Online): 2374-2003 Website: Editor-in-chief: Jean Rommelaere
Open Access
Journal Browser
Journal of Cancer Research and Treatment. 2016, 4(3), 37-40
DOI: 10.12691/jcrt-4-3-1
Open AccessReview Article

Tamoxifen-resistant Breast Cancer: Causes of resistance and Possible Management

Ahmed M. Kabel1, 2, , Dania Altalhi3, Hanan Alsharabi3, Ola Qadi3 and Maram Ad khan3

1Department of Clinical Pharmacy, College of Pharmacy, Taif University, Taif, KSA

2Department of Pharmacology, Faculty of Medicine, Tanta University, Tanta, Egypt

3Fifth year student, College of Pharmacy, Taif University, Taif, KSA

Pub. Date: June 04, 2016

Cite this paper:
Ahmed M. Kabel, Dania Altalhi, Hanan Alsharabi, Ola Qadi and Maram Ad khan. Tamoxifen-resistant Breast Cancer: Causes of resistance and Possible Management. Journal of Cancer Research and Treatment. 2016; 4(3):37-40. doi: 10.12691/jcrt-4-3-1


Tamoxifen has been used for the systemic treatment of patients with breast cancer by block the action of estrogen is also used to lower a woman's chance of developing breast cancer if she has a high risk . Treatment success is primarily dependent on the presence of the estrogen receptor (ER) in the breast carcinoma. While about half of patients with advanced ER-positive disease immediately fail to respond to tamoxifen, in the responding patients the disease ultimately progresses to a resistant phenotype. The possible causes for intrinsic and acquired resistance have been attributed to the pharmacology of tamoxifen, alterations in the structure and function of the ER and the interactions with the tumor environment and genetic alterations in the tumor cells.

tamoxifen; resistance; breast; cancer

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


Figure of 1


[1]  Kabel A.M., Elkhoely A.A. Ameliorative potential of fluoxetine/raloxifene combination on experimentally-induced breast cancer. Tissue and Cell 2016; 48(2):89-95.
[2]  McDonnell D.P., Norris J.D. Connections and regulation of the human estrogen receptor. Science 2002; 296:1642-1644.
[3]  Musgrove E.A., Sutherland R.L. Biological determinants of endocrine resistance in breast cancer. Nat. Rev. Cancer 2009;9:631-643.
[4]  Kabel A.M., El Rashidy M.A., Omar M.S. Ameliorative Potential of Tamoxifen/Thymoquinone Combination in Patients with Breast Cancer: A Biochemical and Immunohistochemical Study. Cancer Med. Anticancer Drug. 2016; 1:102.
[5]  Perou C.M., Sørlie T., Eisen M.B., van de Rijn M., Jeffrey S.S., Rees C.A., et al. Molecular portraits of human breast tumours. Nature. 2000; 406:747–752.
[6]  Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature. 2012; 490:61-70.
[7]  Britton D.J., Hutcheson I.R., Knowlden J.M., Barrow D., Giles M., McClelland R.A., Gee J.M., Nicholson R.I. Bidirectional cross talk between ERalpha and EGFR signalling pathways regulates tamoxifen-resistant growth. Breast Cancer Res Treat. 2006;96:131-146.
[8]  Osborne C.K., Fuqua S.A. Mechanisms of tamoxifen resistance. Breast Cancer Res. Treat., 32: 49-55, 1994.
[9]  Osborne C.K., Jarman M., McCague R., Coronado E. B., Hilsenbeck S.G., Wakeling A. E. The importance of tamoxifen metabolism in tamoxifen-stimulated breast tumor growth. Cancer Chemother. Pharmacol., 34: 89-95, 1994.
[10]  Gottardis M. M., Jordan V. C. Development of tamoxifen-stimulated growth of MCF-7 tumors in athymic mice after long-term antiestrogen administration. Cancer Res. 1988; 48: 5183-5187.
[11]  Legault-Poisson S., Jolivet J., Poisson R., Beretta-Piccoli M., Band P. R. Tamoxifen-induced tumor stimulation and withdrawal response. Cancer Treat. Rep. 1979; 63: 1839-1841.
[12]  Hoskins J.M., Carey L.A., McLeod H.L. CYP2D6 and tamoxifen: DNA matters in breast cancer. Nat. Rev. Cancer 2009;9:576-586.
[13]  Yang X., Phillips D.L., Ferguson A.T., Nelson W.G., Herman J.G., Davidson N.E. Synergistic activation of functional estrogen receptor (ER)-α by DNA methyltransferase and histone deacetylase inhibition in human ER-α-negative breast cancer cells. Cancer Res. 2001;61:7025-7029.
[14]  Parl F.F. Multiple mechanisms of estrogen receptor gene repression contribute to ER-negative breast cancer. Pharmacogenomics J. 2003;3:251-253.
[15]  Weigel R.J., deConinck E.C. Transcriptional control of estrogen receptor in estrogen receptor-negative breast carcinoma. Cancer Res. 1993;53:3472-3474.
[16]  Ottaviano Y.L., Issa J.P., Parl F.F., Smith H.S., Baylin S.B., Davidson N.E. Methylation of the estrogen receptor gene CpG island marks loss of estrogen receptor expression in human breast cancer cells. Cancer Res. 1994;54:2552-2555.
[17]  Creighton C.J., Hilger A.M., Murthy S., Rae J.M., Chinnaiyan A.M., El-Ashry D. Activation of mitogen-activated protein kinase in estrogen receptor α-positive breast cancer cells in vitro induces an in vivo molecular phenotype of estrogen receptor α-negative human breast tumors. Cancer Res. 2006;66:3903-3911.
[18]  Osborne C.K., Bardou V., Hopp T.A., Chamness G.C., Hilsenbeck S.G., Fuqua S.A., Wong J., Allred D.C., Clark G.M., Schiff R. Role of the estrogen receptor coactivator AIB1 (SRC-3) and HER-2/neu in tamoxifen resistance in breast cancer. J. Natl. Cancer Inst. 2003; 95:353-361.
[19]  Chang F., Lee J.T., Navolanic P.M., Steelman L.S., Shelton J.G., Blalock W.L., Franklin R.A., McCubrey J.A. Involvement of PI3K/Akt pathway in cell cycle progression, apoptosis, and neoplastic transformation: A target for cancer chemotherapy. Leukemia. 2003;17:590-603.
[20]  Datta S.R., Brunet A., Greenberg M.E. Cellular survival: A play in three Akts. Genes Dev. 1999;13:2905-2927.
[21]  Angel P., Karin M. The role of Jun, Fos and the AP-1 complex in cell-proliferation and transformation. Biochim. Biophys. Acta. 1991;1072:129-157.
[22]  Sommer S., Fuqua S.A. Estrogen receptor and breast cancer. Semin. Cancer Biol. 2001;11:339-352.
[23]  Smith C.L., Nawaz Z., O’Malley B.W. Coactivator and corepressor regulation of the agonist/antagonist activity of the mixed antiestrogen, 4-hydroxytamoxifen. Mol. Endocrinol. 1997;11:657-666.
[24]  Jordan V.C., O’Malley B.W. Selective estrogen-receptor modulators and antihormonal resistance in breast cancer. J. Clin. Oncol. 2007;25:5815-5824.
[25]  Lydon J.P., O’Malley B.W. Minireview: Steroid receptor coactivator-3: A multifarious coregulator in mammary gland metastasis. Endocrinology. 2011;152:19-25.
[26]  Azorsa D.O., Tanner M.M., Guan X.Y., Sauter G., Kallioniemi O.P., Trent J.M., Meltzer P.S. AIB1, a steroid receptor coactivator amplified in breast and ovarian cancer. Science. 1997;277:965-968.
[27]  Murphy L.C., Simon S.L., Parkes A., Leygue E., Dotzlaw H., Snell L., Troup S., Adeyinka A., Watson P.H. Altered expression of estrogen receptor coregulators during human breast tumorigenesis. Cancer Res. 2000;60:6266-6271.
[28]  List H.J., Reiter R., Singh B., Wellstein A., Riegel A.T. Expression of the nuclear coactivator AIB1 in normal and malignant breast tissue. Breast Cancer Res. Treat. 2001;68:21-28.
[29]  Tzukerman M.T., Esty A., Santiso-Mere D., Danielian P., Parker M.G., Stein R.B., Pike J.W., McDonnell D.P. Human estrogen receptor transactivational capacity is determined by both cellular and promoter context and mediated by two functionally distinct intramolecular regions. Mol. Endocrinol. 1994;8:21-30.
[30]  Knowlden J.M., Hutcheson I.R., Barrow D., Gee J.M., Nicholson R.I. Insulin-like growth factor-I receptor signaling in tamoxifen-resistant breast cancer: A supporting role to the epidermal growth factor receptor. Endocrinology. 2005;146:4609-4618.
[31]  Arpino G., Wiechmann L., Osborne C.K., Schiff R. Crosstalk between the estrogen receptor and the HER tyrosine kinase receptor family: molecular mechanism and clinical implications for endocrine therapy resistance. Endocr Rev. 2008;29:217-233.
[32]  Loi S., Sotiriou C., Haibe-Kains B., Lallemand F., Conus N.M., Piccart M.J., Speed T.P., McArthur G.A. Gene expression profiling identifies activated growth factor signaling in poor prognosis (Luminal-B) estrogen receptor positive breast cancer. BMC Med Genomics 2009;2:37.
[33]  Iorio M.V., Casalini P., Piovan C., Braccioli L., Tagliabue E. Breast cancer and microRNAs: Therapeutic impact. Breast 2011;20:S63-S70.
[34]  Desta Z., Ward B.A., Soukhova N.V., Flockhart D.A. Comprehensive evaluation of tamoxifen sequential biotransformation by the human cytochrome P450 system in vitro: Prominent roles for CYP3A and CYP2D6. J. Pharmacol. Exp. Ther. 2004;310:1062-1075.
[35]  Kiyotani K., Mushiroda T., Nakamura Y., Zembutsu H. Pharmacogenomics of tamoxifen: roles of drug metabolizing enzymes and transporters. Drug Metab. Pharmacokinet. 2012;27:122-131.
[36]  Hoskins J.M., Carey L.A., McLeod H.L. CYP2D6 and tamoxifen: DNA matters in breast cancer. Nat. Rev. Cancer. 2009;9:576-586.
[37]  Weinshilboum R. Inheritance and drug response. N. Engl. J. Med. 2003;348:529-537.
[38]  Trimarchi M.P., Mouangsavanh M.,HuangT.H. Cancer epigenetics: A perspective on the role of DNA methylation in acquired endocrine resistance. Chin. J. Cancer. 2011;30:749-756.
[39]  Raina D., Uchida Y., Kharbanda A., Rajabi H., Panchamoorthy G., Jin C., Kharbanda S., Scaltriti M., Baselga J., Kufe D. Targeting the MUC1-C oncoprotein downregulates HER2 activation and abrogates trastuzumab resistance in breast cancer cells. Oncogene 2014; 33(26): 3422-3431.