Journal of Aquatic Science
ISSN (Print): ISSN Pending ISSN (Online): ISSN Pending Website: http://www.sciepub.com/journal/jas Editor-in-chief: Hanaa Abd El Baky
Open Access
Journal Browser
Go
Journal of Aquatic Science. 2014, 2(2), 5-10
DOI: 10.12691/jas-2-2-1
Open AccessArticle

Concentration of Trace Metals in the Squids (Loligo duvauceli, Sepioteuthis lessoniana) and Cuttlefish (Sepia latimanus) from the North-Western Coast of Sri Lanka

B.K.K.K. Jinadasa1,

1Institute of Post Harvest Technology (IPHT), National Aquatic Resources Research &Development Agency (NARA), Crow Island, Colombo-15, Sri Lanka

Pub. Date: May 04, 2014

Cite this paper:
B.K.K.K. Jinadasa. Concentration of Trace Metals in the Squids (Loligo duvauceli, Sepioteuthis lessoniana) and Cuttlefish (Sepia latimanus) from the North-Western Coast of Sri Lanka. Journal of Aquatic Science. 2014; 2(2):5-10. doi: 10.12691/jas-2-2-1

Abstract

Concentrations of ten essentials and non essentialstrace metals Hg, Mg, Fe, Zn, Cu, Ni, Cr, Cd, Pb and Co were determined in the muscles of two squids (Loligoduvauceli; n=24, Sepioteuthislessoniana; n=27) and one cuttlefish (Sepia latimanus; n=12) species collected from Kalpitiya and Mannar area of Sri Lanka in 2010. Trace metals were analysed using Varian Atomic Absorption Spectroscopy (VGA, GTA and Flame AAS). The mean values of all trace metals in muscles of studied species were within the international safety limits and pooled mean concentration of trace elements were following order; Mg > Zn > Cu > Fe > Cr > Ni > Hg > Cd > Co >Pb.

Keywords:
squids cuttlefish Sri Lanka trace metals

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Antonio, V.S., et al., Assessment of European cuttlefish (Sepia officinalis, L) nutritional value and freshness under ice storage using a developed quality index method (QIM) and biochemical methods. Food science and technology, 2009. 42: p. 424-432.
 
[2]  Pasiyappazham, R., et al., Nutritional evaluation of the different body parts of cuttlefish Sepia kobiensis Hoyle, 1885. African journal of food science, 2012. 6(22): p. 535-538.
 
[3]  Saleh, A.F., et al., Heavy metals accumulation in the mantle of the common cuttlefish Sepia pharaonis from the Arabian Gulf. Australian journal of basic and applied sciences, 2011. 5(6): p. 897-905.
 
[4]  Nurjanah, et al., Proximate, nutrient and mineral composition of cuttlefish (Sepia recurvirostra). Advance journal of food science and technology 2012. 4(4): p. 220-224.
 
[5]  FAO, FAO globefish cephalopodes community update, FAO. 2011.
 
[6]  Paulo, V.P., et al., Sensory, microbiological, physical and chemical properties of cuttlefish (Sepia officinalis) and broadtail shortfin squid (Illex coindetii) stored in ice. Food science and technology, 2008. 41: p. 1655-1664.
 
[7]  Kojadinovic, J., et al., Multi-elemental concentration in the tissues of the oceanic squid Todarodes filippovae from Tasmania and the southern Indian Ocean. Ecotoxicology and environmental safety, 2011. 74: p. 1238-1249.
 
[8]  Barbosa, A. and P. Vaz-Pires, Quality index method (QIM): development of a sensorial scheme for common octopus (Octopus vulgaris). Food control, 2004. 15(3): p. 161-168.
 
[9]  Dayarathne, N.M.P.J., Preliminary study in the cuttlefish catches from the wedge bank trawl fishery. Bulletin of the fisheries research station Ceylon, 1978. 28: p. 27-35.
 
[10]  Perera, N.M.P.J., Taxonomic Study of the Cephalapods, particularly the Teuthoidea (squids) and Sepidea (cuttlefish) in the waters around Sri Lanka. Bulletin of the fisheries research station Ceylon, 1975. 26(182): p. 45-60.
 
[11]  Bustamante, P., et al., Metal and metalloid concentrations in the giant squid Architeuthis dux from Iberian waters. Marine environment research, 2008. 66(2): p. 278-287.
 
[12]  Bustamante, P., et al., Total and organic Hg concentrations in cephalopods from the North Eastern Atlantic waters: influence of geographical origin and feeding ecology. Science of the total environment 2006. 368(2-3): p. 585-596.
 
[13]  Silas, E.G., Cephalopod binomics, fisheries and resources of the exclusive economic zone of the India. Bulletin of the center marine research institute, 1986. 37: p. 195.
 
[14]  De Bruin, G.H.P., B.C. Russel, and A. Bogusch, FAO Species Identification Field Guide for Fishery Purposes. The marine fishery resources of Sri Lanka. 1994, Rome: FAO.
 
[15]  Vinodhini, R. and M. Narayana, Bioaccumulation of heavy metals in organs of freshwater fish Cyprinus carpio (Common carp). International journal of environmental science and technology, 5 (2), 179-182, 2008. 5(2): p. 179-182.
 
[16]  Georgantelis, D., et al., Determination of trace metals in canned cephalopods, in 7th International conference on environmental science and technology. 2001: Syros island, Greece. p. 109-113.
 
[17]  Paulo, R.D., et al., Cephalopods and cetaceans as indicators of offshore bioavailability of cadmium off Central South Brazil Bight. Environmental pollution 2007. 148: p. 352-359.
 
[18]  Kamaruzzaman, B.Y., et al., Level of some heavy metals in fishes from Pahang river estuary, Pahang, Malaysia. Journal of biological science 2010. 10(2): p. 157-161.
 
[19]  Hoda, H.H.A., M.A.A. Aly, and T.T. Fathy, Assessment of heavy metals and nonessential content of some edible and soft tissues Egyptian journal of aquatic research, 2007. 33: p. 85-97.
 
[20]  Pierce, G.J., et al., Geographic, seasonal and ontogenetic variation in cadmium and mercury concentrations in squid (Cephalopoda: Teuthoidea) from UK waters. Ecotoxicology and environmental safety, 2008. 70(3): p. 422-432.
 
[21]  EU/EC, Commission Regulation (EC), No 1881/06 of setting maximum levels for certain contaminants in foodstuffs. Official Journal of European Union, 2006. L364: p. 5-24.
 
[22]  EC, Commission Regulation (EC), No 629/08 of amending Regulation (EC) No 1881/2006 setting maximum levels for certain contaminants in Food stuffs. Official journal of European Union, 2008. L173: p. 6-9.
 
[23]  Monteiro, L.R., et al., Mercury concentrations in prey fish indicate enhanced bioaccumulation in mesopelagic environments. Marine ecology progress series, 1996. 141: p. 21-25.
 
[24]  Miramand, P., et al., Variation of heavy metal concentrations (Ag, Cd, Co, Cu, Fe, Pb, V and Zn) during the life cycle of the common cuttlefish Sepia officinalis. Science total environment, 2006. 361(1-3): p. 132-143.
 
[25]  Seixas, S., P. Bustamante, and G.J. Pierce, Inter annual pattern of variation in concentration of trace elements in arms of Octopus vulgaris. Chemosphere, 2005. 59: p. 1113-1124.
 
[26]  Roger, V. and P. Bustamante, Composition in essential and non-essential elements of early stages of cephalopods and dietary effects on the elemental profiles of Octopus vulgaris paralarvae. Aquaculture 2006. 261: p. 225-240.
 
[27]  Prafulla, V., L. Francis, and P.T. Lakshman, Concentration of trace metals in the squids, Loligo duvauceli and Doryteuthis sibogae caught from the Southwest Coast of India. Asian fisheries science, 2001. 14: p. 399-410.
 
[28]  Fatih, P. and S. Ozlem, Magnesium levels in vital organs of Bluefin tuna, Thunnus thynnus L., from the Turkish region of Eastern Mediterranean. Journal of animal and veterinary advances, 2010. 9(21): p. 2768-2773.
 
[29]  Honda, K., et al., Heavy metal concentrations in muscle, liver and kidney tissue of striped dolphin, Stenella coeruleoalba and their variations with body length, weight, age and sex. Agriculture biologicle chemistry, 1983. 47(6): p. 1219-1228.
 
[30]  Suwanna, P., R.P.P.K. Jayasinghe, and C. Chookong, Heavy metal content in purple back squid (Sthenoteuthis oualaniensis) from the Bay of Bengal. The ecosystem based fishery management in the Bay of Bengal, 2007: p. 233-243.
 
[31]  Narasimha, M.L., et al., Cadmium in the purple back flying squids Sthenoteuthis oualaniensis (Lesson, 1830) along northwest coast of India. Journal of marine biological association of India, 2008. 50(2): p. 191-195.
 
[32]  Falandysz, J., Trace metal in the raw and tinned squids Loligo patagonica. Food additives and contaminents, 1989. 6: p. 483-488.
 
[33]  Bustamante, P., et al., Cephalopods as a vectro for the transfer of cadmium to top marine predators in the north-east Atlantic Ocean. Science total environment, 1998. 220: p. 71-80.
 
[34]  Falandysz, J., Concentration of trace metals in various tissues of the squid Loligo opalescens and their redistribution after canning. Journal of science food agriculture, 1991. 54: p. 79-87.