Journal of Aquatic Science
ISSN (Print): ISSN Pending ISSN (Online): ISSN Pending Website: Editor-in-chief: Hanaa Abd El Baky
Open Access
Journal Browser
Journal of Aquatic Science. 2013, 1(1), 11-22
DOI: 10.12691/jas-1-1-3
Open AccessReview Article

Healthy Benefit of Microalgal Bioactive Substances

Hanaa H. Abd El Baky, and Gamal S. El-Baroty

Pub. Date: March 31, 2013

Cite this paper:
Hanaa H. Abd El Baky and Gamal S. El-Baroty. Healthy Benefit of Microalgal Bioactive Substances. Journal of Aquatic Science. 2013; 1(1):11-22. doi: 10.12691/jas-1-1-3


Microalgae have been widely used as novel sources of bioactive substances. Along with this trend, the possibility of replacing synthetic preservatives with natural ones is receiving much attention. In general, microalgae are rich in various phytochemicals like carotenoids, phycocayanine, phenolics, amino acids, polyunsaturated fatty acids, and sulphated polysaccharides. These compounds are providing excellent various biological actions including, antioxidant, antimicrobial, antiviral, antitumoral, anti-inflammatory and anti-allergy effects. Their healthy benefit seemed to be due to different biochemical mechanisms. However, some microalgae species such as Chlorella, Spirulina and Dunaliella species have been used in several areas in nutraceutical, pharmaceutical, cosmetics, nutrition and functional quality of foods. In 2006, World Health Organization has been described Spirulina as one of the greatest super-foods on earth serving as an example of the potential of microalgae. This review provides background on current and future uses of microalgae as novel source of health promoting compounds.

microalgae antioxidant nutrition biological activities functional food

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


Figure of 3


[1]  Kay, AR (1991). Microalgae as food and supplement. Critical Rev. Food Sci. Nut., 30: 555-573.
[2]  Abd El Baky H Hanaa, El Baz FK, El-Baroty GS (2009a). Phenolics from Spirulina maxima: Over-production and in vitro protective effect of its phenolics on CCl4 induced hepatotoxicity. J. Med. Plant Res., 3:24-30.
[3]  Herrero M, Cifuentes A, Ibanez E (2006). Supercritical fluid extraction of functional ingredients from different natural sources: Plants, food-by-products, algae and microalgae A review. Food Chem., 98: 136-148
[4]  Abd El Baky H Hanaa; El-Baroty GS (2012). Characterization and bioactivity of phycocyanin isolated from Spirulina maxima grown under salt stress. Food Funct., 3, 381-388.
[5]  Guedes AC, Catarina RB, Helena MA, Pereira CI, Francisco X M (2011). Microalgal and cyanobacterial cell extracts for use as natural antibacterial additives against food pathogens. Inter. J. Food Sci. Technol., 46: 862-870.
[6]  Xu N, Zhang X, Fan X, Han L, Zeng C (2001). Effect of nitrogen source and concentration on growth rate and fatty acid composition of Ellipsoidion sp. (Eustiguatophyta). Appl. Phycol., 13: 463-469.
[7]  Bely A (2002). The potential application of Spirulina (Athrospira) as a nutritional and therapeutic supplement in health management. JANA, 5:27-48.
[8]  Lu YM, Xiang W, Yong-Huang W (2011). Spirulina (Arthrospira) industry in Inner Mongolia of China: current status and prospects. J. Appl. Phycol., 23:265-269.
[9]  Abd El Baky H Hanaa; El Baz FK; El-Baroty GS (2009d). Enhancement of antioxidant production in Spirulina platensis under salt stress. Acta. Phys. Plant, 31:623-631.
[10]  Abd El Baky H Hanaa, El Baz FK and El-Baroty GS (2006). Over-production of Lipid Rich in -Linolenic Acid by Blue Green Alga Spirulina maxima and its Inhibitory Effect on Carcinoma Cells. Ad. Food Sci., 4: 206-212.
[11]  Abd El Baky H. Hanaa, El Baz FK, El-Baroty GS (2008). Characterization of nutraceutical compounds in blue green alga Spirulina maxima. J. Med. Plant Res., 2: 292-300.
[12]  Abd El Baky H Hanaa, El Baz FK, El-Baroty GS (2009). Evaluation of Marine Alga Ulva lactuca L as A Source of Natural Preservative Ingredient. Inter. J. Food Sci. Technol., 44: 1688-1695.
[13]  Harnedy PA, Fitz A, Gerald RJ (2011). Bioactive proteins, lipids, peptides and amino acids from microalgae. J. Phycol., 47:218-232.
[14]  Borowitzka AM (1995). Microalgae as sources of pharmaceuticals and other biologically active compounds. J. Appl. Phycol. 7: 3-15.
[15]  Tafreshi HA, Shariati M (2009). Dunaliella biotechnology: methods and applications. J. Appl. Microbiol., 107: 14-35.
[16]  El Baroty GS, El Baz FK, Abd-Elmoein EM, Abd El Baky H Hanaa, Ail MM and Ibrahim EA (2011). Evaluation of glycolipids of some Egyptian marine algae as a source of bioactive substances. Int. Res. J. Pharma., 2: 165-174.
[17]  Lee YK, Soh BS, Wu JH (2001). Quantitive assessment of phagocytic activity hemocytes in the prawn, Penaeus merguiensis by flow cytometric. Cytometry, 43: 82-85.
[18]  Halliwell B (1997). Antioxidants and human disease: a general introduction. Nut. Rev., 55: S44-S51.
[19]  Shinmoto H, Dosako S, Nakajima I (1992). Antioxidant activity of bovine lactoferrinon iron/ascorbate induced lipid peroxidation. Biosci. Biotech. Biochem., 56:2079-2080.
[20]  Zhang DH, Lee YK (1997). Enhanced accumulation of secondary carotenoids in a mutant of green algae Chlorococcum sp. J. Appl. Phycol., 9: 459- 463.
[21]  Abd El Baky, H. Hanaa; El Baz, F.K. and El-Baroty, G.S. (2010). Enhancing antioxidant availability in grains of wheat plants grown under seawater-stress in response to microalgae extracts treatments. J Sci Food Agric., 90: 299-303.
[22]  Ben-Amotz A, Shaish A, Avron M (1991). The biotechnology of cultivating Dunaliella for production of  carotene rich algae. Biores. Technol., 38: 233-335.
[23]  El-Baz FK, Aboul-Enein AM, El-Baroty GS, Youssef AM, Abd El-Baky H Hanaa (2002). Accumulation of antioxidant vitamins in Dunaliella salina. Online J. Biol. Sci. 2: 220-223.
[24]  Abd El Baky H Hanaa, El Baz FK, El-Baroty GS (2004 b). Production of antioxidant by the green alga Dunaliella salina. Int. J. Agri. Biol., 1: 49-57.
[25]  Mojaat M, Pruvost J, Foucault A, Legrand J (2008). Effect of organic carbon sources and Fe 2+ ions on growth and b-carotene accumulation by Dunaliella salina. Biochem. Eng. J., 39: 177-184.
[26]  Steinbrenner J, Hartmut L (2001). Regulation of two carotenoids biosynthesis genes coding for phytoene synthase and carotenoid hydroxylase during stress-induced astaxanthin formation in the green alg Haematococcus pluvialis. Plant physol., 125: 810-817.
[27]  Abd El Baky H Hanaa, El Baz FK, El-Baroty G.S (2007). Production of carotenoids from marine microalgae and its evaluation as safe food colorant and lowering cholesterol agents. Am. Eurasian J. Agric. Environ. Sci., 2: 792-800.
[28]  Richmond A (1986). Hand book of Microalge Mass Culture. CRC Press Inc. Bocaraton Florida.
[29]  Rabbani S, Beyer P, Lontig VJ (1998). Induced -carotene synthesis driven by triacylglycerol deposition in the unicellular algae Dunaliella bardawil. Plant Physiol., 116: 1239-1248.
[30]  Olaizla M (1998). Commercial production of astaxanthin from Haematococcus pluvialls using 25,000-liter outdoor photobioreactors. Appl. Phycol., 10:405-411.
[31]  Borowitzka AM, Borowitzka JL (1986). Dunaliella In “ Micro-algal biochology “ ed., Borowitzka AM., and Borowitzka JL, Cambridge, New York, pp 28-58.
[32]  Liu B, Lee Y (2001). Secondary carotenoids formation by the green alga Chlorococcum sp. Appl. Phcol., 13:395-402.
[33]  Abd El Baky H Hanaa; El-Baz FK, El-Baroty GS (2004a). Production of Lipids rich in Omega 3 Fatty Acids from the Halotolerant alga Dunaliella salina. Biotechnol., 3: 102-108.
[34]  Aboul-Enein AM, El-Baz FK, El-Baroty GS, Youssef AM, Abd El-Baky H Hanaa (2003). Antioxidant activity of algal extracts on lipid peroxidation. J. Med. Sci., 3: 87-98.
[35]  Abd El Baky H Hanaa, El Baz FK, El-Baroty GS (2009b). Potential biological properties of sulphated polysaccharides extracted from the macroalgae Ulva lactuca L. Acad. J. Cancer Res., 2: 1-11.
[36]  Woodall A, Britton G, Jackson M (1997). Carotenoids and protection of phospholipids in solution or in liposomes against oxidation by peroxyl radicals: Relationship between carotenoid structure and protective ability. Biochim. Biophys. Acta, 1336:575-586.
[37]  Abd El Baky H Hanaa (2003). Over production of Phycocayanin pigment in blue green alga Spirulina and its inhibitory effect on growth of Ehrlich ascites carcinoma cells. J. Med. Sci., 3: 314-324.
[38]  Nagasawa HK, Konishi R, Sensui N, Yamamoto K, Ben-Amotz A (1989). Inhibition by -carotene–rich algae Dunaliella of spontaneous mammary tumourigenesis in mice. Anticancer Res., 9: 71-76.
[39]  Bendich A (1989). Carotenoids and the immune response. J. Nutr., 119: 112-115.
[40]  Jyonouchi H, Sun S, Myron G (1995). Effect of carotenoids on in vitro immunoglobulin production by human peripheral blood mononuclear cells: Astaxanthin, a carotenoid without vitamin A activity, enhances in vitro immunoglobulin production in response to a T-dependent stimulant and antigen. Nutr. Cancer, 23:171-183.
[41]  Tomita Y, Himeno K, Nomoto K, Endo H (1987). Augmentation of tumor immunity against synergistic tumors in mice by beta-carotene. J. Natl. Cancer Inst., 78: 679-681.
[42]  Tanaka TY, Morishita M, Suzui T, Kojima A, Okumura A, Mori H (1994). Chemoprevention of mouse urinary bladder carcinogenesis by the naturally occurring carotenoids astaxanthin. Carcinogen. 15:15-19.
[43]  Gradelet S, Astorg P, Le Bon AM, Berges M, Suschetet M (1997). Modulation of aflatoxin B1 carcinogenicity, genotoxicity and metabolism in rat liver by dietary carotenoids: evidence for a protective effect of CYP1A inducers. Cancer Lett., 114:221-223.
[44]  Jyonouchi H, Sun S, Iijima K, Gross M (2000). Antitumor activity of astaxanthin and its mode of action. Nutr. Cancer, 36:59-65.
[45]  Kotake E, Kushiro M, Zhang H, Sugawara K, Nagao A (2001). Carotenoids affect proliferation of human prostate cancer cells. J. Nutr., 131: 3303-3306.
[46]  Schwartz J, Troxler RF, Saffer BG (1987). Algae-derived phycocyanin is both cytostatic and cytotoxic to oral squamous cell carcinoma (human or hamster). J. Dent. Res., 66:160-166.
[47]  Bendich A. (1991). Non vitamin A activity of carotenoids: immunoenhancement. Trends Food Sci. Technol., pp. 127-129.
[48]  Okai Y, Higashi-Okai K, Nakamura S, Yano Y, Otani S (1994). Suppressive effects of the extracts of Japanese edible seawoods on mutagen expression in S. typhimutium (TA 1535/PSk 1002) and tumor promoter-dependent ornithine decarboxylase induction in BALB /c3T3 fibroblast cells. Cancer Lett., 87: 25-32.
[49]  Chew PB (1995). Antioxidant vitamin affects food immunity and health. Am. Instit. Nutr. 1804S-1808S.
[50]  Naidu KA, Sarada R, Manoj G, Khan MY, Mahadeva M, Srinivs L (1999). Toxicity assessment of phycocyanin a blue colorant from blue green alga Spirulina platensis. Food Biotechnol., 13: 51-66.
[51]  Reis A, Mendes A, Lobo-Fernandes H, Empis JA, Novais JM (1998). Production, extraction and purification of phycobiliproteins from Nostoc sp. Bioresor. Technol., 66: 181-187.
[52]  Abd El Baky H Hanaa, El Baz FK, El-Baroty GS (2003). Spirulina Species as a Source of Carotenoids and -Tocopherol and its anticarcinoma factors. Biotechol., 3: 222-240.
[53]  Romay C, Ledon N, Gonzalez R (1998). Further studies on anti-inflammatory activity of phycocyanin in some animal models of inflammation. Inflam Res., 334-338.
[54]  Hirata T, Tanaki M, Ooike M, Tsunomura T, Sagakuchi M. (2000). Antioxidant activities of phycocyanobillin prepared from Spirulina platensis. J. Appl. Phycol., 435-439.
[55]  Rimbau V, Camins A, Romay C, Gonzalez R, Pallas M. (1999). Protective effect of C-phycocyanin against kainic acid induced neuronal damage in rat hippocampus. Neurosci. Lett., 276: 75-78.
[56]  Schwartz J, Shklar G, Reid S, Trickler D (1988). Prevention of experimental oral cancer by extracts of Spirulina- Dunaliella algae. Nutr. Cancer, 11:127-134.
[57]  Belay A. (1993). Current knowledge on potential health benefits of Spirulina. J Appl Phycol., 5:235-241.
[58]  Fabregas J, Herrero C (1990). Vitamin content of four marine microalgae. Potential use as source of vitamin in nutrition. J. Indust. Microbiol. 5: 259-264.
[59]  Xu X, Beardall J, Hallam ND (1998). Modification of fatty acid composition in halophlic antarctic microalgae. Phytochem., 49: 1249-1252.
[60]  Cardozo HM; Guaratini T; Barros MB; Falcão VR; Tonon AP; Lopes NP; Campos S; Torres MA; Souza AO; Colepicolo P; Pinto E (2007). Review: Metabolites from algae with economical impact. Comparat. Biochem. Physiol., Part C 146: 60-78.
[61]  Pascaud M, Quoc KP (1996). Effect of dietary linolenic acid on the tissue phospholipid fatty acid composition and the synthesis of eicosanoids in rats. Ann Nutr Metab., 40: 99-108.
[62]  Hoffman DR, Birch EE, Birch DG, Uany RD (1993). Effect of supplementation with ω-3 long-chain polyunsaturated fatty acids on retinal and cortical development in premature infants. Am. J. Clin. Nutr., 57: 807S-812S.
[63]  Paula A, Armenta H (2011). Developments in oil extraction from microalgae. Eur. J. Lipid Sci. Technol., 113: 539-547.
[64]  Lopez DA, Belarbi E, Fernandez-Sevilla JM, Rodriguez-Ruiz J, Grima EM (2000). Acyl lipid compostion varatiom velated to culture age and nitrogen concentration in continuous culture of the microalga Phaeodctylum tricornutum. Phytochem., 54: 461-471.
[65]  Shanmugam KH, Mody M (2000). Heparinoid-active sulphated polysaccharides from marine algae as potential blood anticoagulant agents. Current Sci., 79: 1672-1683.
[66]  Mori H; Kamei H; Nishide E (1982). In Marine Algae in Pharmaceuticl Science. (eds.) Lcrving P; Hoppe HA; Tanaka Y, Walter de Gruyter, New York, vol 2, p 109.
[67]  Torres-Duran PV, Miranda-Zamora R, Paredes-Carbajal MC, Mascher D, Diaz-Zagoya JC, Juarez-Oropeza M (1998). Spirulina maxima prevents induction of fatty liver by carbon tetrachloride in the rat. Biochem. Mol. Biol. Int., 44: 787-793.
[68]  Hayashi K, Hayashi T, Kojima I. (1996). A natural sulfated polysaccharide, calcium Spirulina, isolated from Spirulina platensis: in vitro and ex vivo evaluation of anti-Herpes simplex virus and anti-human immunodeficiency virus activities. AIDS Res. Human Retrov., 12: 1463-1471.
[69]  Ayehunie S, Belay A, Baba TW, Ruprecht RM (1998). Inhibition of HIV-1 replication by an aqueous extract of Spirulina platensis (Arthrospira platensis). J. Acqu. Immu. Defic. Syndro. Hum. Etrovir., 18: 7-12.
[70]  Catarina G, Catarina RB, Helena M, Pereira AI; Malcata FX (2011). Microalgal and cyanobacterial cell extracts for use as natural antibacterial additives against food pathogens. Inter. J. Food Sci. Technol., 46: 862–870.
[71]  Xue C, Hu Y, Saito H, Zhang Z, Li Z, Cai Y, Ou C, Lin H, Imbs AB (2002). Molecular species composition of glycolipids from Sprirulina platensis. Food Chem., 77: 9–13.
[72]  Bergsson G, Steingrimsson O, Thormar H (2002). Bactericidal effects of fatty acid and monoglycerides on Helicobacter pylori. Inter. J. Antimic. Agents, 20: 258-262.
[73]  Pradhan J, Das PK, Sahu S, Marhual NP, Swain AK, Mishra BK, Eknath AE (2011).Traditional antibacterial activity of freshwater microalga Spirulina platensis to aquatic pathogens. Aquacul. Res., 1-9
[74]  Das B.K, Pradhan J (2010). Antibacterial properties of selected freshwater microalgae against pathogenic bacteria. Ind. J. Fish., 57: 6166.
[75]  Skulberg OM (2000). Microalge as a source of bioactive molecules-expperience from cyanophyte research. Appl. Phycol. 12: 341-348.
[76]  Morton S, Bomber J (1994). Maximizing okadaic acid content from Prorocentrum hoffinannianum Faust. J. Appl. Phycol., 6: 41-44.
[77]  Chetsumon A, Fujieda K, Hirata K, Yagi K, Miura Y (1993). Optimization of antibiotic production by the cyanobacterium scytonema sp. TISTR 8208 immobilized on polyurethane foam. J. Appl. Phycol., 5: 615-622.
[78]  Bates SS, Worms J, Smith JC (1993). Effects of ammonium and nitrate on growth and domoic acid production by Nitschia pungens in batch culture. Can. J. Z. Fish. Aquat. Sci., 50: 1248-1254.
[79]  Gromov BV, Vepritskiy A, Titova N, Mamkayeva K, Alexandrova O (1991). Production of the antibiotic cyanobacterium LU-1 by Nostoc loncka CALU 892. J. Appl. Phycol., 3: 55-59.
[80]  Utkilen H, Gjolme N (1992). Toxin production by Microcystis aeuginosa as a function of light in continuous cultures and its ecological significance. Appl. Envirn. Microbiol., 58: 1321-1325.
[81]  Running AJ, Huss JR, Olson TP (1994). Heterotrophic production of ascorbic acid by micro-algae. J. Appl. Phycol., 6: 99-104.
[82]  Ohta S., Ono F., Shiomi Y., Nakao T., Aozasa O., and Miyata H., (1998). Anti-Herpes simplex virus substances produced by the marine green alga Dunaliella priumolecta. Appl. Phycol., 10: 349-355.
[83]  Gustafson KP, Cardellina JH, Fuller RW, Weslow OS, Kiser RF, Sanader KM, Paterson GM, Boyd MR (1989). AIDS-antiviral sulfolipids from cyanobacteria (blue green algae). J Natl. Cancer Inst., 81: 1254-1258.
[84]  Tsuchihashi N, Watanabe T, Takai Y. (1987). Effect of Spirulina platensis on caecum content in rats. Bull. Chiba Hygiene College, 7:27-30.
[85]  De Mule MC, De Caire G, de Cano M. (1996). Bioactive substances from Spirulina platensis (Cyanobacteria). Int. J. Exper. Bot., 58: 93-96.
[86]  Parada JI, De Caire G, De Mule MC, De Cano MM (1998). Lactic acid bacteria growth promoters from Spirulina platensis. Int. J. Food Microbiol., 45: 225-228.
[87]  Kato T, Takemoto K, Katayama H, Kuwabara Y (1984). Effects of Spirulina (Spirulina platensis) on dietary hypercho lesterolemia in rats. J. Jap. Soc. Nutr. Food Sci., 37:323-332.
[88]  De Rivera C, Miranda-Zamora R, Diaz-Zagoya JC, Juarez, Oropeza M (1993). Preventive effect of Spirulina maxima on the fatty liver induced by a fructose-rich diet in the rat. Life Sci., 53: 57-61.
[89]  Mani S; Iyer U; Subramanian S (1998). Studies on the effect of Spirulina supplementation in control of diabetes mellitus. In Subramanian G. ed. Cyanobacterial Biotechnology, Science Publishers Inc, USA, pp 301-304.
[90]  Cherng J, Shih M (2005). Preventing dyslipidemia by Chlorella pyrenoidosa in rats and hamsters after chronic high fat diet treatment. Life Sci., 76: 3001-3013.
[91]  Gutierrez R M, Vargas R, Flores JMM, Hernandez SG (2008). Hypoglycemic activity of aqueous extract of Oscillatoria limnetica, Blennothrix ganeshii, Hdrodictyon reticulatum and Microcoleous lacustris in normal and alloxan induced diabetic mice. J. Complementary Integrative Med., 5:1-29.
[92]  Takai Y, Hossayamada Y, Kato T (1991). Effect of water soluble and water insoluble fractions of Spirulina over serum lipids and glucose resistance of rats. J. Jpn. Soc. Nutr. Food Sci., 44: 273-277.
[93]  Becker EW, Jakover B, Luft D, Schmuelling RM.(1986). Clinical and biochemical evaluations of the alga Spirulina with regard to its application in the treatment of obesity: a double-blind cross-over study. Nutr Rep Int. 33:5 65-574.
[94]  Iwata K, Munakata K, Inayama T, Kato T. (1990). Effect of Spirulina platensis on blood pressure in rats. Bull. Kagawa Nutr. Univ., 21: 63-70.
[95]  Paredes-Carbajal MC, Torres-Duran PV, Diaz-Zagoya JC, Mascher D, Juarez- Oropeza MA (1997). Effect of dietary Spirulina maxima on endothelium dependent vasomotor responses of rat aortic rings. Life Sci., 61:211-219.
[96]  Cheng-Wu Z, Chao-tsi T, Yuan-Zhen Z (1994). The effects of polysaccharide and phycocyanin from Spirulina platensis on peripheral blood and hematopoietic system of bone marrow in mice. Book of Abstracts. Second Asia Pacific Conference on Algal Biotechol.58.
[97]  Rodriguez-Hernandez A, Ble-Castillo JI, Juarez-Oropeza MA, Diaz-Zagoya JC (2001). Spirulina maxima prevents fatty liver formation in CD-1 male and female mice with experimental diabetes. Life Sci. 69: 1029-1037.
[98]  Qishen P, Baojiang G, Kolman A (1989). Radioprotective effect of extract from Spirulina platensis in mouse bone marrow cells studied by using the micronucleus test. Toxicol Lett., 48: 165-169.
[99]  Mazo VK, Gmoshinskii IV, Sokolova AG, Zorin S, Danilina LL, Litvinova AV, Radchenko SN (1999). Effect of biologically active food additives containing autolysate of baker’s yeast and Spirulina on intestinal permeability in an experiment. Vopr. Pitan., 68: 17-19.
[100]  Archer DL, Glinsmarm WH (1985). Intestinal infection and malnutrition initiate AIDS. Nutr Res., 5-19.
[101]  Stavric B (1994). Role of chemopreventers in human diet clinical. Biochem., 27: 319-332.
[102]  Abd El Baky H Hanaa, Gouda EM, El-Behairy AN, El-Baroty GS (2002). Chemoprevention of benzo[a]pyrene-induced carcinogen and lipid peroxidation in mice by lipophilic algae extracts (phycotene). J. Med. Sci., 2: 185-193.
[103]  Schorach CJ, Sobala GM, Sandrson M, Collin M, Primrose JN (1991). Gastric juice, ascorbic acid: Effects of disease and implications for gastric carcinogenesis. Am. Clin. Nutr., 53: 287S-293S.
[104]  Morse MA, Stoner GD (1993). Cancer prevention: principles and prospects. Carcinogenesis 14: 1737-1746.