Journal of Atmospheric Pollution
ISSN (Print): 2381-2982 ISSN (Online): 2381-2990 Website: http://www.sciepub.com/journal/jap Editor-in-chief: Ki-Hyun Kim
Open Access
Journal Browser
Go
Journal of Atmospheric Pollution. 2018, 6(1), 1-11
DOI: 10.12691/jap-6-1-1
Open AccessArticle

Evaluation of the Precision and Accuracy of Multiple Air Dispersion Models

Frank Gronwald1, and Shoou-Yuh Chang1

1North Carolina A&T Civil Engineering Department. Greensboro, NC 27401, USA

Pub. Date: February 10, 2018

Cite this paper:
Frank Gronwald and Shoou-Yuh Chang. Evaluation of the Precision and Accuracy of Multiple Air Dispersion Models. Journal of Atmospheric Pollution. 2018; 6(1):1-11. doi: 10.12691/jap-6-1-1

Abstract

Determining the level of air pollution is a modern day necessity for government regulators and industrialized sources. Air dispersion models are often used to determine the concentration of a pollutant. However changing conditions and several assumptions made by the models limit their accuracy at various times. The objectives of this research are the evaluation of four different air dispersion models (Gaussian Plume, Variable K Theory, Box, and AFTOX) as well as developing a more efficient method of evaluating air dispersion models. In the process of determining their performance, the change in accuracy was measured through RMSE calculations and the change in precision was measured through calculating the Brier Score. It was found that in the prediction of NO2 Variable K Theory and Gaussian Plume both models produced average reduction of 21.2% of mean RMSE from the other models. The Variable K model also proved to be most precise with a 8.9% lower Brier Score than the next best model.

Keywords:
air dispersion modeling brier score gaussian plume AFTOX Variable K Theory

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Sutton, O.G. (1953). Micrometeorology. McGraw-Hill. New York.
 
[2]  Pasquill, F. (1974). Atmospheric Dispersion Parameters in Gaussian Plume Modeling. Part II Possible Requirements for Change in the Turner Workbook Values. EPA-600/4-76-030b,U.S. Environmental Protection Agency.
 
[3]  Stern, A.C. (1976). Air Pollution: Volume I - Air Pollutants, Their Transformation and Transport. Academic Press, New York.
 
[4]  Sportisse, B. (2007). A Review of Current Issues in Air Pollution Modeling and Simulation. Computational Geosciences. 11(2), 159-181.
 
[5]  Mallette, F.S. (1955). A New Frontier: Air Pollution Control. Proc. Inst. Mech. Engrs. 169(22), 598-599.
 
[6]  Monache, L. D., X. Deng, H. Modzelewski, G. Hicks, T. Cannon, R.B. Stull, and C. Cenzo. (2007). Air Quality Ensemble Forecast Over the Lower Fraser Valley, British Columbia. Air Pollution Modeling and Its Application. Springer US, 399-402.
 
[7]  Webber, D.M., M.J. Ivings, and R.C. Santon. (2011). Ventilation Theory and Dispersion Modelling Applied to Hazardous Area Classification. Journal of Loss Prevention in theProcess Industries. 24(5), 612-621.
 
[8]  Turner, D. B. and R. H. Shulze (2007). Practical Guide to Air Dispersion Modeling. Trinity Consultants. Dallas.
 
[9]  Mohan, M., S. Bhati, and A. Rao. (2011). Application of Air Dispersion Modelling for Exposure Assessment From Particulate Matter Pollution in Mega City Delhi. Asia-Pacific Journal of Chemical Engineering. 6(1), 85-94.
 
[10]  Molter, A., S. Lindley, A. Simpson, and R Agius. (2010). Modeling Air Pollution for Epidemiologic Research - Part I: A Novel Approach Combining Land Use Regression and Air Dispersion. Science of the Total Environment. 408(23), 5862-5869.
 
[11]  Keith, L. H. and M. M. Walker. (1995). Handbook of Air Toxins. CRC Press. Boca Raton.
 
[12]  Taseiko, O. V., S. V. Mikhailuta, A. Pitt, A.A. Lezhenin, and Y.V Zakharov. (2009). Air Pollution Dispersion Within Urban Street Canyons. Atmospheric Environment. 43(2), 245-252.
 
[13]  Riccio, A., A. Ciaramella, E Solazzo, and S. Potempski. (2012). On the Systematic Reduction of Data Complexity in Multi Model Atmospheric Dispersion Ensemble Modeling. J.Geophys. Res. 117(5), 5302-5314.
 
[14]  Banerjee, T., S. C. Barman, and R.K Srivastava. (2011). Application of Air Pollution Dispersion Modeling for Source Contribution Assessment and Model Performance Evaluation atIntegrated Industrial Estate in Pantnagar. Environmental Pollution. 159(4), 865-875.
 
[15]  Horst, W. (1976). A Surface Depletion Model for Deposition from a Gaussian Plume. Atmospheric Environment. 11, 41-46.
 
[16]  Sharan, M. and M. Modani (2007). Variable K-theory Model for the Dispersion of Air Pollutants in Low Wind Conditions in the Surface Based Inversion. Atmospheric Environment. 41(33), 6951-6963.
 
[17]  Sharan, M. and A.K. Yadav (1998). Simulation of Diffusion Experiments Under Light Wind, Stable Conditions by a Variable K-Theory Model. Atmospheric Environment. 32(20), 3481-3492
 
[18]  Gronwald, F, S.Y. Chang, and A. Jin. (2017). Determining a Source in Air Dispersion with a Parallel Genetic Algorithm. International Journal of Emerging Technology and Advanced Engineering. 7(8). 174-185.
 
[19]  Kunkel, B. A. (1988). User's Guide for the Air Force Toxic Chemical Dispersion Model (AFTOX). Interim report, October 1985-December 1987. 1-65.
 
[20]  Zettlemoyer, M. D. (1990). An Attempt to Estimate Uncertainty in the Air Force Toxic Chemical Dispersion Model. Masters Thesis, Florida State University.
 
[21]  Kunkel, B. A. (1991). AFTOX 4.0 -- The Air Force Toxic Chemical Dispersion Model: a User's Guide. Hanscom AFB, Mass.
 
[22]  Paal, D. M. (1993). Air pollution transport modeling. Master's thesis. Air Force Inst. of Tech.,Wright-Patterson AFB, OH.
 
[23]  Williamson, S. J. (1973). Fundamentals of Air Pollution. Addison-Wesley Publishing Phillipines.
 
[24]  Arya, S.P. (1999). Air Pollution Meteorology and Dispersion. Oxford University Press. New York.
 
[25]  Stefanova, L. and T. N. Krishnamurti (2002). “Interpretation of Seasonal Climate Forecast Using Brier Skill Score, The Florida State University Superensemble, and the AMIP-I Dataset.” Journal of Climate. 15(5): 537.
 
[26]  Murphy, A. H. (1973) A Note on the Ranked Probability Skill Score. J. Appl. Meteor. 10, 155-156.
 
[27]  Brier, G. W., (1950) Verification of Forecasts Expressed in Terms of Probability. Mon. Wea. Rev. (78), 1-3.
 
[28]  Wilks, D. S., (1995) Statistical Methods in the Atmospheric Sciences. International Geophysics Series, 59, 467, 317-324.
 
[29]  Weigel, A.P., M.A. Liniger, and C.Appenzeller. (2007) Generalization of the Discrete Brier and Ranked Probability Skill Scores for Weighted Multimodel Ensemble Forecasts. Mon. Wea. Rev., 135, 2778-2785.
 
[30]  Peltier, L. J., S. E. Haupt, A. Deng, J.A. Lee, K.J. Long, and A.J. Annunzio . (2010). Parameterizing Mesoscale Wind Uncertainty for Dispersion Modeling. Journal of Applied Meteorology & Climatology. 49(8), 1604-1614.
 
[31]  Shin, D. W. and T. N. Krishnamurti (2003). Short to Medium Range Superensemble Precipitation Forecasts Using Satellite Products: 2. Probabilistic forecasting. J. Geophys. Res. 108(8).
 
[32]  Bradt, C.S. and W.W. Heck. 1968. Effects of Air Pollutants on Vegitation. Air Pollution 12(1), 407-408.
 
[33]  Pagowski, M., G. A. Grell, S.E Peckham, W. Gong, L. Delle Monache, J. McQueen, and P. Lee. (2006). Application of Dynamic Linear Regression to Improve the Skill of Ensemble Based Deterministic Ozone Forecasts. Atmospheric Environment. 40(18), 3240-3250.
 
[34]  Mallet, V., E. Qu,, B. Sportisse, A.D. Biasi, M. Debry, E. Korsakissok, I. Wu, L. Roustan, Y. Sartelet, K.. Tombette, and H. Foudhil. (2007). The Air Quality Modeling System Polyphemus. Atmos. Chem. Phys. Discuss. 7(3), 6,459-6,486.
 
[35]  Cane, D. and M. Milelli (2006). “Weather Forecasts Obtained with a Multimodel SuperEnsemble Technique in a Complex Orography Region.” Meteorologische Zeitschrift. 15(2): 207-214.
 
[36]  Mallet, V. and Sportisse, B. (2006). Ensemble Based Air Quality Forecasts: A Multi Model Approach Applied to Ozone. J. Geophys. Res., 111.
 
[37]  Labovský, J. and L. Jelemenský (2011). Verification of CFD Pollution Dispersion Modelling Based on Experimental Data. Journal of Loss Prevention in the Process Industries. 24(2), 166-177.
 
[38]  Wilks, D. S., (1995) Statistical Methods in the Atmospheric Sciences. International Geophysics Series, 59, 467, 317-324.
 
[39]  Faith, W.L. and A.A. Atkisson. (1972). Air Pollution. 2nd Edition. Wiley-Interscience. New York.
 
[40]  Challa, V., J. Indrcanti, and J. Baham. (2008). Sensitivity of Atmospheric Dispersion Simulations by HYSPLIT to the Meteorological Predictions from a Meso Scale Model. Environmental Fluid Mechanics. 8(4), 367-387.
 
[41]  Chaves, R. R., R. S. Ross, and T.N Krishnamurti (2005). Weather and Seasonal Climate Prediction for South America Using a Multi Model Superensemble. International Journal of Climatology. 25(14), 1881-1914.
 
[42]  Kiša, M. and L. Jelemenský (2009). CFD Dispersion Modelling for Emergency Preparadnes. Journal of Loss Prevention in the Process Industries. 22(1), 97-104.
 
[43]  Chaves, R. R., A. K. Mitra, and T.N. Krishnamurti. (2005). Seasonal Climate Prediction for South America with FSU Multi Model Synthetic Superensemble Algorithm. Meteorology and Atmospheric Physics. 89(1), 37-56.
 
[44]  Khajehnajafi, S., R. Pourdarvish, and H.. Shah (2011). Modeling Dispersion and Deposition Of Smoke Generated from Chemical Fires. Process Safety Progress. 30(2), 168-17.
 
[45]  Strimaitis, D. G., R. J. Paine, B. A. Egan and R. J. Yamartino, 1987. EPA Complex Terrain Model Development: Final Report. Contract No. 68-02-3421, U. S. Environmental Protection Agency, Research Triangle Park, North Carolina
 
[46]  Hanna, S.R. and J.C. Chang, 1993. Hybrid Plume Dispersion Model (HPDM) Improvements and Testing at Three Field Sites. Atmos. Envir., 27A, 1491-1508.