Journal of Atmospheric Pollution
ISSN (Print): 2381-2982 ISSN (Online): 2381-2990 Website: Editor-in-chief: Ki-Hyun Kim
Open Access
Journal Browser
Journal of Atmospheric Pollution. 2015, 3(1), 22-30
DOI: 10.12691/jap-3-1-5
Open AccessArticle

Aircraft Observation of Aerosol and Cloud-droplet Properties over the East China Sea Influenced by the Outflow of Asian Polluted Air

Deepak Aryal1, , Yutaka Ishizaka2 and Kikuo Okada3

1Central Department of Hydrology and Meteorology, Tribhuvan University, Kirtipur, Kathmandu, Nepal

2Division of General education, Aichi Gakuin University, 12 Araike, Iwasaki-cho, Nisshin 470-0195, Japan

3Meteorological Research Institute, 1-1 Nagamine, Tsukuba, Ibaraki 305-0052, Japan

Pub. Date: December 24, 2015

Cite this paper:
Deepak Aryal, Yutaka Ishizaka and Kikuo Okada. Aircraft Observation of Aerosol and Cloud-droplet Properties over the East China Sea Influenced by the Outflow of Asian Polluted Air. Journal of Atmospheric Pollution. 2015; 3(1):22-30. doi: 10.12691/jap-3-1-5


Airborne measurements of aerosol particles and cloud microstructures were made over the ocean around the south of Kyushu Islands of Japan during the Asian Atmospheric Particulate Environmental Change Experiment 3/Asia Pacific Regional Aerosol Characterization Experiment (APEX-E3/ACE-Asia) during the period of 17 March to 13 April 2003. Results demonstrated that polluted air from the Asia continent could penetrate several hundreds of kilometers over the oceans and clouds forming in that air had significantly altered microphysical properties. Based on the number concentration of aerosol particles with diameters between 0.3 and 5 μm, two cases were investigated: 22 March 2003 was termed a "clean" case and 12 April 2003 as a "polluted" case. Single particle analysis of particles was also carried out by electron microscopy. The particles in the polluted marine boundary layer were characterized by the presence of sulfate particles with traces of potassium and heavy metals. The cloud droplets in the polluted marine boundary layer exhibited larger number concentrations than those in the clean boundary layer, along with the decrease in the droplet size. Present study demonstrated that polluted air from the Asia continent could penetrate several hundreds of kilometers over the oceans and clouds forming in that air had significantly altered microphysical properties.

East China Sea Size distribution Cloud droplet Biomass burning single particle analysis

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


[1]  Akimoto, H., Narita, H., 1994. Distribution of SO2, NOx and CO2 emissions from fuel combustion and industrial activities in Asia with 1o×1 o resolution. Atmospheric Environment 28, 213-225.
[2]  Andreae, M. O., 1996. Raising dust in the greenhouse. Nature 380, 389-390.
[3]  Andreae, M. O., Atlas, E., Cachier, H., Cofer III, W. R., Harris, G. W., Helas, G., Koppmann, R., Lacaux, J. P., Ward, D. E., 1996. Trace gas and aerosol emissions from savanna fires, in Biomass Burning and global changes. Vol. 1, edited by Levine, J. S., pp 278-295, MIT Press, Cambridge, Mass.
[4]  Charlson, R.J., Heintzenberg, J. (Eds.), 1995. Aerosol Forcing of Climate. Wiley, New York 416pp.
[5]  Charlson, R. J., Schwartz, S.E., Hales, J.M., Cess, R. D. Coakley Jr., J.A., Hansen, J. E., Hofmann, D. J., 1992. Climate forcing by anthropogenic aerosols. Science 255, 423-430.
[6]  Christensen, K. A., Livbjerg, H., 1995. Formation of submicron particles from the combustion of straw. Journal of Aerosol Science 26, 691-696.
[7]  Coffman, D. J., Hegg, D.A., 1995. A preliminary study of the effect of ammonia on particle nucleation in the marine boundary layer. Journal of Geophysical Research 100, 7147-7160.
[8]  Cooper, W. A., Bruintjes, R. T., Mather, G. K., 1997. Calculations Pertaining to Hygroscopic Seeding with Flares. Journal of Applied Meteorology 36, 1449-1469.
[9]  Dentener, F. J., Carmichael, G. R., Zhang, Y., Lelieveld, J., Crutzen, P. J., 1996. Role of mineral aerosol as a reactive surface in the global troposphere. Journal of Geophysical Research. 101 (D17), 22,869-22889.
[10]  Durkee, P. A., Nooke, K.J., Ferek, R.J., Johnson, D.W., Taylor, J. P., Garrett, T.J., Hobbs, P.V., Hudson, J. G., Bretherton, C.S., Innis, G., Frick, G.M., Hoppel,W.A., O’Dowd, C.D., Russel, L.M., Gasparavic, R., Nielsen, K. E., Tessmer, S. A., Ostrom, E., Osborne, S. R., Flagan, R.C., Seinfeld, J. H., Rand, H., 1999. The Impact of Ship-Produced Aerosols on the Microstructure and Albedo of Warm Marine Stratocumulus Clouds: A Test of MAST Hypotheses 1i and 1ii. Journal of Atmospheric Sciences, 57, 2554-2569.
[11]  Frank, E.R., Lodge, J. P., 1967. Morphological identification of air-borne particles with electron microscope. Journal of Microscopy 6, 449-456.
[12]  Galloway, J. N., 1989. Atmospheric Acidification: Projections for the future. Ambio.18, 161-166.
[13]  Galloway, J. N., Zhao, D., Thomson, V. E., Chang, L. H., 1996. Nitrogen mobilization in the United States of America and the People’s Republic of China. Atmospheric Environment 30, 1551-1561.
[14]  Gao, Y., Anderson, J. R., 2001. Characteristics of Chinese aerosols determined by individual-particle analysis. Journal of Geophysical Research 106, 18037-18045.
[15]  Hatakeyama, S., Murano, K., Bandow, H., Sakamaki, F. M. Yamato, Tanaka S., Akimoto H., 1995. The 1991 PEACAMPOT aircraft observation of Ozone, NOX and SO2 over the East China Sea, the Yellow Sea and the Sea of Japan. Journal of Geophysical Research 100, 23,143-23, 151.
[16]  Hegg, D. A., 2000. Impact of gas-phase HNO3 and NH3 on microphysical processes in atmospheric clouds, Geophysical Research Letters 27, 2201-2204.
[17]  Ikegami, M., Okada, K., Zaizen, Y., Makino., Y., Jensen, J. B., Gras, J. L., Harjanto, H., 2001. Very high weight ratios of S/K in individual haze particles over Kalimantan during the 1997 Indonesian forest fires. Atmospheric Environment 35, 4237-4243.
[18]  Ikegami, M., Okada, K., Zaizen, Y., Tsutsumi, Y., Makino., Y., Jensen, J. B., Gras, J. L., 2004. The composition of aerosol particles in the middle troposphere over the western Pacific Ocean: Aircraft observations from Australia to Japan 1994. Atmospheric Environment 38, 5945-5956.
[19]  Kajii, Y., Akimoto, H., Komazaki, Y., Tanaka, S., Mukai, H., Murano, K., Merrill, J., 1997. Long-range transport of ozone, carbon monoxide, and acidic trace gases at Oki Island, Japan during PEMWEST(B)/PEACAMPOT (B) campaign. Journal of Geophysical Research 102, 28637-28649.
[20]  Kato, N., Akimoto, H., 1992. Anthropogenic emissions of SO2 and NOX in Asia emission inventories. Atmospheric Environment 26A, 2297-3017.
[21]  Kulmala, M., Laaksonen, A., Korhonen, P., Vesala, T., Ahonen, T., Barrett, J. C. 1993. The effect of atmospheric nitric acid vapor on cloud condensation nucleus activation. Journal of Geophysical Research 98, 22949-22958.
[22]  Okada, 1983. Nature of Individual Hygroscopic Particles in the Urban Atmosphere. J. Meteor. Soc. Japan 61, 727-736.
[23]  Okada, k., Hitzenberger, R. M., 2001. Mixing properties of individual submicrometer aerosol particles in Vienna. Atmospheric Environment 35, 5617-5628.
[24]  Okada, K., Ikegami, M., Zaizen, Y., Tsutsumi, Y., Makino, Y., Jensen, J. B., Gras, J. L., 2005. Soot particles in the free troposphere over Australia. Atmospheric Environment 39, 5079-5089.
[25]  Okada, K., Ohata, T., Furukawa, A.,Seko, K., 1999. Individual aerosol particles in the atmosphere of the Tibetan Plateau. In proceedings of First Asia Aerosol Conference, Nagoya, Japan, July 27-29, pp. 157-158.
[26]  Pacyna, J., 1984. Estimation of atmospheric emission of trace elements from anthropogenic sources in Europe. Atmospheric Environment 18, 41-50.
[27]  Post, J.E., Buseck, P. R., 1984. Characterization of individual particles in the Phoenix of marine aerosols over the Atlantic Ocean, Atmospheric Research 20, 23-37.
[28]  Project Prospectus of ACE-Asia, IGAC. p. 54.
[29]  Pruppacher, H. R., Klett, J. D., 1997. Microphysics of clouds and Precipitation, Kluwer Academic Press, Norwell, Mass.
[30]  Pszenny, A. A., Prinn, R.G., (Eds.) 1994. International Global Atmospheric Chemistry (IGAC) Project. The operational plan, IGBP, Stockholm.Rep. No. 32 p. 21-24.
[31]  Rojas, C., Van Grieken, R., 1992. Electron microprobe characterization of individual aerosol particles collected by aircraft above the southern bight of North Sea. Atmospheric Environment 26A, 1231-1237.
[32]  Sokolik, I. N., Toon, O. B., Bergstrom, R. W., 1998. Modeling the radiative characteristics of airborne mineral aerosols at infrared wavelengths. Journal of Geophysical Research 103(D8), 8813-8826.
[33]  Xhoffer, C., Bernard, P., Van Grieken, R., 1991. Chemical characterization and source apportionment of individual aerosol particles over the North Sea and the English Channel using multivariate techniques. Environmental Science and Technology 25, 1470-1478.
[34]  Zaizen, Y., Ikegami, M., Tsutsumi, Y., Makino, Y., Okada, K., Jensen, J., Gras, J. L. 1996. Number concentration and size distribution of aerosol particles in the middle troposphere over the western Pacific Ocean. Atmospheric Environment 30, 1755-1762.
[35]  Zhang, D., Ishizaka, Y., Aryal, D., 2006. Individual particles and droplets in continentally influenced a stratocumulus: a case study over the Sea of Japan. Atmospheric Research: 79, 30-51.
[36]  Zhang, D., Iwasaka, Y., Shi, G. Y., 2001. Soot particles and their impacts on the mass cycle in Tibetan atmosphere. Atmospheric Environment 35, 5883-5894.