Journal of Applied & Environmental Microbiology
ISSN (Print): 2373-6747 ISSN (Online): 2373-6712 Website: http://www.sciepub.com/journal/jaem Editor-in-chief: Sankar Narayan Sinha
Open Access
Journal Browser
Go
Journal of Applied & Environmental Microbiology. 2018, 6(2), 30-36
DOI: 10.12691/jaem-6-2-1
Open AccessArticle

Arbuscular Mycorrhizal Fungi Diversity in Selected Heavy metal Contaminated Soils in Owerri, Nigeria

Chris O. Nwoko1, , Chinwe J. Ngumah2, Chinedu E. Ihejirika1, Chima Ngumah3, Adaeze A. Ojiaku1 and Iheoma E Mbuka-Nwosu1

1Restoration Ecology Research Group, Department of Environmental Technology, Federal University of Technology, Owerri

2Department of Biology, Federal University of Technology, Owerri, PMB 1526

3Department of Microbiology, Federal University of Technology

Pub. Date: May 17, 2018

Cite this paper:
Chris O. Nwoko, Chinwe J. Ngumah, Chinedu E. Ihejirika, Chima Ngumah, Adaeze A. Ojiaku and Iheoma E Mbuka-Nwosu. Arbuscular Mycorrhizal Fungi Diversity in Selected Heavy metal Contaminated Soils in Owerri, Nigeria. Journal of Applied & Environmental Microbiology. 2018; 6(2):30-36. doi: 10.12691/jaem-6-2-1

Abstract

An investigation was carried out on the species diversity of Arbuscular mycorrhizal (AM) fungi in selected heavy metal contaminated soils within Owerri metropolis. Soils (0-20cm) were collected from 8 different locations viz (1) high auto mechanic activity area. (2) Medium auto mechanic activity area. (3) Low auto mechanic activity area. (4) Old dump site. (5) Active dump site. (6) Recovery dump site. (7) Heavy traffic highway. (8) Undisturbed vegetative land that served as control. Soil samples were analyzed for physicochemical parameters including heavy metal viz lead (Pb), Cadmium (Cd) and Zinc (Zn). Also the ecological characteristics of AM fungi species were determined. Results showed that areas with high pollution index (PI) adversely affected the richness and diversity of AM fungi species. Seven different AM fungi ecotypes were isolated from the soil samples. These ecotypes had varied relative abundance across the locations. Species richness and diversity as measured by Shannon-Wiener index decreased in soils with PI > 20 but increased with low PI < 20. However, these organisms maintained significant populations across the locations. Thus suggesting high possibility of facilitating microbial activity in heavy metal stressed soil ecosystems.

Keywords:
Abuscular Mycorrhizal fungi (AMF) species diversity land degradation soil restoration and heavy metals

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Smith, S.E. and Smith, F.A.. Roles of Arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystems scales. Annu Rev Plant Biol 2011, 63: 227-250.
 
[2]  Smith, S.E., Smith, F.A. and Jakobsen I .. Functional diversity in arbuscular mycorrhizal (AM) symbioses: the contribution of the mycorrhizal P uptake pathway is not correlated with mycorrhizal responses in growth or total P uptake. New Phytol .2004. 162: 511-524.
 
[3]  Pouyu-Rojas, E, Sigueira, J.O, and Santos, J.G.D.. Compatibilidade simbiotica de fungos micorrizices arbusculares com species arboreas tropicas. Rev. Bras. Sci. Solo. 2006.30: 413-424.
 
[4]  Gaur .A and A. Adholeya. Prospects of arbuscular mycorrhizal fungi in phytoremediation of heavy metal contaminated soils. Current Science, 2004. VOL. 86, NO. 4, 528-534.
 
[5]  Barea, J.M. and Jeffries, P.. Arbuscular Mycorrhizal in sustainable soil plant systems P. 521-559. In B. Hock and A Varma (ed). Mycorrhiza structure, function, molecular biological and biotechnology, springer-Verlag, Heidelberg, Germany. 1995.
 
[6]  Barea, J.M, Toro, M. Orozco, M.O, Campos, E, and Ezcon, R.. The application of isotopic (32p and 15N) dilution techniques to evaluate the interactive effect of phosphate-solubilizing rhizobacteria, mycorrhizal fungi and rhizobium to improve the agronomic efficiency of rock phosphate for legume crops. Nutrient Cycling Agroecosyst .2002 63: 35-42
 
[7]  Jasper, D. A., L. Abott, and A. D. Robson.. The effect of soil disturbance on vesicular arbuscular mycorrhizal fungi in soils from different vegetation types. New Phytol. 1991. 118: 471-476.
 
[8]  Rillig M.C and Mummey, D.L. Mycorrhizas and soil structure. New Phytol. 2006.171(1):41-53.
 
[9]  Nwoko, C. O.. Effect of Arbuscular Mycorrhizal (AM) Fungi on the Physiological Performance of Phaseolus vulgaris Grown under Crude Oil Contaminated Soil. Journal of Geoscience and Environment Protection, 2014.2: 9-14.
 
[10]  Gildon, A, and Tinker, P.B.. A heavy metal tolerant strain of a mycorrhizal fungus. New phytol, 1983. 95: 263-268.
 
[11]  Weissenhorn, I, Leyval, C, and Berthelin, J.. Cd tolerant arbuscular mycorrhizal (AM) fungi from heavy metal polluted soils. Plant Soil .1993. 157: 247-256.
 
[12]  Griffioen, W. A. J., Iestwaart, J. H. and Ernst, W. H. O.. Mycorrhizal infection of Agrostis capillaris population on a coppercontaminated soil. Plant Soil, 1994. 158, 83-89.
 
[13]  Turnau, K., Kottke, I. and Oberwinkler, F. Element localization in mycorrhizal roots of Pteridium aquilinum L. Kuhn collected from experimental plots treated with cadmium dust. New Phytol., 1993. 123, 313-324.
 
[14]  Nwachukwu, A.M., Feng, H., and Achilike, K. Integrated study for automobile wastes management and environmentally friendly mechanic villages in the Imo River Basin, Nigeria. African Journal of Environmental Science and Technology. 2010. 4(4): 234-294.
 
[15]  Chanda, D, G.D.Sharma and D.K.Jha Isolation and identification of some Arbuscular Mycorrhiza (AM) fungi for phytoremediation in soil contaminated with paper mill effluent. Int.J.Curr.Microbiol. App. Sci. 2014. 3(6): 527-539.
 
[16]  Morton, J. B., and D. Redecker. Two new families of Glomales, Archaeosporacea and Paraglomaceae, with two new genera Archaeospora and Paraglomus, based on concordant molecular and morphological characters. Mycologia .2001. 93: 181-195.
 
[17]  Schenck, N.C and Perez Y, Manual for the Identification of VA Mycorrhizal Fungi. (3rd edn). Gainesville, Florida, Synergistic Publications. 1990.
 
[18]  Bray, R.H, Kurtz, L.T Determination of total organic and available forms of phosphorus in soils. Soil Sci. 1947. 59: 39-48.
 
[19]  Olsen, S. R., Sommers. L.E. Determination of available phosphorus. In “Method of Soil Analysis”, vol. 2, ed. A. L. Page, R. H. Miller, and D. R. Keeney, 403. Madison, WI: American Society of Agronomy. 1982.
 
[20]  Usero, J., E. Gonza-Regalado and I. Gracia,. Trace metal in the bivalve molluscs Ruditapes decussates and Ruditapes philippinarum from the Atlantic Coast of Southern Spain. Environ. Int., 23: 291-298. 1997
 
[21]  del Val. C., J. M. Barea, and C. Azcon-Aguilar Diversity of Arbuscular Mycorrhizal Fungus Populations in Heavy-Metal-Contaminated Soils. Applied and Environmental Microbiology . Vol. 65, No. 2: 718-723. 1999.
 
[22]  Smith, S.E, and Read, D.J. Mycorrhizal symbiosis academic press San Diego USA. 1997.
 
[23]  Gildon, A., and P. B. Tinker. A heavy metal tolerant strain of mycorrhizal fungus. Trans. Br. Mycol. Soc. 77: 648-649. 1981.
 
[24]  Kaldorf, M., Kuhn, A. J., Schroder, W. H., Hildebrandt, U. and Bothe, H., Selective element deposits in maize colonized by a heavy metal tolerance conferring arbuscular mycorrhizal fungus. Jou. Plant Physiol. 154, 718-728. 1999.
 
[25]  Shetty, K.G, Hetrick, B.A, and Schwab, A.P. Effects of mycorrhiza and fertilizer amendments on zinc tolerance of plants. Environ. Pollution. 1995. 88: 307-314.
 
[26]  Nwoko, C.O, P.N Okeke and P.C. Ogbonna Influence of soil particle size and arbuscular mycorrhizal fungi (AMF) in the performance of Phaseolus vulgaris grown under crude oil contaminated soil. Universal Jou. Enviro. Res. Tech. 2013. Vol.3(2) 300-310.
 
[27]  Sylvia, D. M. and Williams, S. E.,. Vesicular–arbuscular mycorrhizae and environmental stresses. In Mycorrhizae in Sustainable Agriculture (eds Bethlenfalvay, G. J. and Linderman, R. G.), ASA No. 54, Madison, USA, 1992,. 101-124.
 
[28]  Zhu, Y. G., Christie, P. and Laidlaw, A. S., Uptake of Zn by arbuscular mycorrhizal white clover from Zn-contaminated soil. Chemosphere. 2001. 42, 193-199.
 
[29]  Tullio, M., Pierandrei, F., Salerno, A. and Rea, E.. Tolerance to cadmium of vesicular arbuscular mycorrhizae spores isolated from a cadmium-polluted and unpolluted soil. Biol. Fertil. Soils, 2003, 37, 211-214.
 
[30]  Silva LX, Figueiredo MVB, Silva GA, Goto BT, Oliveira JP, Burity HA Fungos micorrízicos arbusculares em áreas de plantio de leucena e sábia no Estado de Pernambuco. R. Árvore, 2007. 31:427-435.
 
[31]  Miranda, J.C.C Cerrado: micorriza arbuscula - ocorrência e manejo. Planaltina: Embrapa Cerrados, 2008. 169.
 
[32]  Cardozo Júnior, R. F. V. Carneiro, B. T. Goto, A. A. C. Bezerra, A. S. F. Araújo, and L. A. P. L. Nunes. Arbuscular mycorrhizal fungi in degraded lands in Northeast Brazil. African Journal of Microbiology Research. 2012. Vol. 6(44): 7198-720.
 
[33]  Wu B, Hogetsu T, Isobe K, Ishii R Community structure of arbuscular mycorrhizal fungi in a primary successional volcanic desert on the southeast slope of Mount Fuji. Mycorrhiza .2007. 17: 495-506.