Journal of Applied & Environmental Microbiology
ISSN (Print): 2373-6747 ISSN (Online): 2373-6712 Website: Editor-in-chief: Sankar Narayan Sinha
Open Access
Journal Browser
Journal of Applied & Environmental Microbiology. 2018, 6(1), 18-24
DOI: 10.12691/jaem-6-1-3
Open AccessArticle

Isolation and Molecular Characterization of Soil Bacteria Capable of Degrading Chlorpyrifos and Diuron Pesticides

Mirenga E.O1, Korir J.C1, , Kimosop S.J2, Orata F2 and Getenga Z.M3

1Department of Biological Sciences, Masinde Muliro University of Science and Technology, Kakamega, Kenya

2Department of Pure & Applied Chemistry, Masinde Muliro University of Science and Technology, Kakamega, Kenya

3Department of Physical Sciences, Chuka University, Chuka Kenya

Pub. Date: February 07, 2018

Cite this paper:
Mirenga E.O, Korir J.C, Kimosop S.J, Orata F and Getenga Z.M. Isolation and Molecular Characterization of Soil Bacteria Capable of Degrading Chlorpyrifos and Diuron Pesticides. Journal of Applied & Environmental Microbiology. 2018; 6(1):18-24. doi: 10.12691/jaem-6-1-3


The pesticides Chlorpyrifos and Diuron have been extensively used in sugarcane farming for several years in spite of their known harmful effects. The aim of this study was to isolate Chlorpyrifos and Diuron- degrading bacteria from exposed agricultural soil in the Nzoia River Drainage Basin and characterize the isolated bacteria by analyzing the 16S rRNA nucleotide sequence. The isolates could be potential candidates for use in bioremediation protocols. One soil isolate was found capable of degrading Chlorpyrifos and another was found capable of degrading Diuron. 16S rRNA gene sequences of the two isolates were deposited in GenBank and assigned the Accession Numbers MG517447 and MG517448 respectively. Sequence analysis of the two isolates using BLASTN and phylogenetic analysis revealed that the isolate capable of utilizing Chlorpyrifos as the sole carbon source was Kosakonia oryzae strain Ola 51, while the isolate capable of utilizing Diuron as the sole carbon source was Pseudomonas aeruginosa strain M-1. Kosakonia oryzae strain Ola 51 and Pseudomonas aeruginosa strain M-1 are thus potential candidates for use in bioremediation protocols for soils contaminated with Chlorpyrifos and Diuron, respectively.

Chlorpyrifos Diuron Kosakonia oryzae Pseudomonas aeruginosa

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


[1]  Singh B.K, Walker A (2006) “Microbial degradation of organophosphorus compounds”. FEMS Microbiology Reviews 30(3): 428-71.
[2]  Solomon, K., Greisy, J., Mackay, D., Anderson, J. (2014) “Evaluation of evidence that the organophosphorus insecticide chlorpyrifos is a potential persistent organic pollutant (POP) or persistent, bioaccumulative, and toxic (PBT)”. Environmental Sciences Europe, Bridging Science and Regulation at the Regional and European Level.
[3]  Ngigi, A., Getenga Z., Boga H., Ndalut, P. (2011) “Biodegradation of phenylurea herbicide diuron by microorganisms from long-term-treated sugarcane-cultivated soils in Kenya.” Toxicological & Environmental Chemistry 93: 623-1635
[4]  Omwoma S., Lalah J.O, Ongeri D.M., Wanyonyi M.B., (2010) “Impact of fertilizers on heavy metal loads in surface soils in Nzoia nucleus estate sugarcane farms in western Kenya.” Bulletin of Environmental Contamination and Toxicology 85(6):602-608.
[5]  Moncada, A. (2004) “Environmental Fate of Diuron.” Environmental Monitoring Branch, Department of Pesticide Regulation Report, Sacramento, CA [Online] Available [Accessed June 4, 2017].
[6]  Stork, P. R., Bennett, F. R. and Bell, M. J. (2008). “The environmental fate of diuron under a conventional production regime in a sugarcane farm during the plant cane phase”. Pest Management Science. 64: 954-963.
[7]  Kaonga CC, Takeda K, Sakugawa H (2015) “Diuron, Irgarol 1051 and Fenitrothion contamination for a river passing through an agricultural and urban area in Higashi Hiroshima City, Japan”. Sci Total Environ 15; 518-519:450-8.
[8]  Robertson L.N, Chandler K.J., Stickley BDA, Cocco R.F, Ahmetagic M. (1998) “Enhanced microbial degradation implicated in rapid loss of chlorpyrifos from the controlled release formulation suSucon(R) Blue in soil”. Crop Protection 17: 29-33.
[9]  Racke K.D., Laskowski D.A& Schultz M.R., (1990) “Resistance of chlorpyrifos to enhanced biodegradation in soil”. Journal of Agricultural and Food Chemistry 38: 1430-1436.
[10]  Ellegaard-Jensen, L. Knudsen, B. E., Johansen, A., Albers, C.N., Aamand,J., Rosendahl, S. (2013). “Fungal- bacteria consortia increase diuron degradation in water-unsaturated systems”. Science of the Total Environment 466-467C:699-705.
[11]  Rani MS, Lakshmi KV, Devi PS, Madhuri RJ, Aruna S, Jyothi K, Narasimha G, Venkateswarlu K (2008). “Isolation and characterization of chlorpyrifos degrading bacterium from agricultural soil and its growth response”. African Journal of Microbiology Research. 2: 026-031.
[12]  Dellamatrice P.M., Monteiro R.T.R., Roque M.R.A, Mellus I.S. (2001). “Degradation of 14C - Diuron by Acinetobacter and soil microbiota”. Biodegradation : 349-352.
[13]  Ifediegwu, M.C., Agu, K.C., Awah, N.S., Mbachu, A.E., Okeke, C.B.1, Anaukwu, C.G, Uba, P.O., Ngenegbo, U.C., Nwankwo, C.M. (2015). “Isolation, Growth and Identification of Chlorpyrifos Degrading Bacteria from Agricultural Soil in Anambra State, Nigeria.” Universal Journal of Microbiology Research 3(4) 46-52, 2015.
[14]  Bailey, W.R. and E.G. Scott. (1966) Diagnostic Microbiology, Second Edition. Toppan Company Ltd, Japan, 342 pp.
[15]  Prescott L.M, Harley J.P and Klein D.A (2004) Microbiology, 6th edn. McGraw-Hill, New York.
[16]  Hall TA (1999) “BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT”. Nucl Acids Symp Ser 41: 95-98.
[17]  Нompson JD, Higgins DG, Gibson TJ (1994) “CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties, and weight matrix choice”. Nucleic Acids Res 22: 4673-4680.
[18]  Saitou N. and Nei M. (1987). “The neighbor-joining method: A new method for reconstructing phylogenetic trees”. Molecular Biology and Evolution 4:406-425.
[19]  Felsenstein J. (1985). “Confidence limits on phylogenies: An approach using the bootstrap”. Evolution 39:783-791.
[20]  Jukes T.H., Cantor C.R (1969) “Evolution of protein molecules”. Mammalian Protein Metabolism 21-132.
[21]  Li, Y, Li, S, Chen, M, Peng, G, Tan, Z, An, Q (2017). “Complete Genome Sequence of Kosakonia oryzae type strain Ola 51T ”. Standards in Genomic Sciences 12:28.
[22]  Peng, G., Zhang, W., Luo, H., Xie, H., Lai, W. & Tan, Z. (2009). “Enterobacter oryzae sp. nov., a nitrogen-fixing bacterium isolated from the wild rice species Oryza latifolia”. Int J Syst Evol Microbiol 59, 1650-1655.
[23]  Brady, C., Cleenwerck, I., Venter, S., Coutinho, T. & De Vos, P. (2013). “Taxonomic evaluation of the genus Enterobacter based on multilocus sequence analysis (MLSA): proposal to reclassify E. nimipressuralis and E. amnigenus into Lelliottia gen. nov. as Lelliottia nimipressuralis comb. nov. and Lelliottia amnigena comb. nov., respectively, E. gergoviae and E. pyrinus into Pluralibacter gen. nov. as Pluralibacter gergoviae comb. nov. and Pluralibacter pyrinus comb. nov., respectively, E. cowanii, E. radicincitans, E. oryzae and E. arachidis into Kosakonia gen. nov. as Kosakonia cowanii comb. nov., Kosakonia radicincitans comb. nov., Kosakonia oryzae
[24]  Richins, R.D., Kaneva, I., Mulchandani, A. and Chen, W. (1997) “Biodegradation of organophosphorus pesticides by surface-expressed organophosphorus hydrolase”. Nat Biotechnol 15, 984-987.
[25]  Wang AA, Mulchandani A, Chen W (2002). “Specific adhesion to cellulose and hydrolysis of organophosphate nerve agents by a genetically engineered Escherichia coli strain with a surface-expressed cellulose-binding domain and organophosphorus hydrolase”. 68:1684-1689.
[26]  Singh B.K., Walker A., Morgan J.A.W. and Wright D.J (2004) “Biodegradation of Chlorpyrifos by Enterobacter Strain B -14 and Its Use in Bioremediation of Contaminated Soils”. App. Environ. Microbio., 70 (8): 4855-4863.
[27]  Widehem, P.; Ait-Aissa, S.; Tixier, C.; Sancelme, M.; Veschambre, H. and Truffaut, N. (2000) “Isolation, characterization and diuron transformation capacities of a bacterial strain Arthrobacter sp. N2”. Chemosphere, 46, 527-534.
[28]  Tixier, C., M. Sancelme, S. Aït-Aïssa, P. Widehem, F. Bonnemoy, A. Cuer, N. Truffaut, and H. Veschambre. (2002). “Biotransformation of phenylurea herbicides by a soil bacterial strain, Arthrobacter sp. N2: structure, ecotoxicity and fate of diuron metabolite with soil fungi”. Chemosphere 46:519-526.
[29]  Sørensen, S. R., Z. Ronen, and J. Aamand. (2001). “Isolation from agricultural soil and characterization of a Sphingomonas sp. able to mineralize the phenylurea herbicide isoproturon”. Appl. Environ. Microbiol. 67:5403-5409.
[30]  Roque, M. R. A.; Monteiro, R. T. R.; Ferracini, V. L. and Melo, I. S. (1998) “Mineralization of 14C-diuron of Acinetobacter baumannii.” In: Latin American Biodegradation and Biodeterioration Symposium, 3, Florianópolis. Proceedings Florianópolis. 5.
[31]  Woo, P. C. Y., Leung, P. K. L., Leung, K. W., & Yuen, K. Y. (2000). “Identification by 16S ribosomal RNA gene sequencing of an Enterobacteriaceae species from a bone marrow transplant recipient”. Molecular pathology, 53(4), 211.
[32]  Dwivedi S, Singh B.R, Al-Khedhairy A.A, Musarrat J. “Biodegradation of isoproturon using a novel Pseudomonas aeruginosa strain JS-11 as a multi-functional bioinoculant of environmental significance”. J Hazard Mater. 2011; 185(2-3): 938-944.
[33]  Yang et al. (2006) Yang C, Liu N, Guo X, Qiao C. “Cloning of mpd gene from a chlorpyrifos- degrading bacterium and use of this strain in bioremediation of contaminated soil”. FEMS Microbiology Letters.2006; 265: 118-125.
[34]  Turnbull GA, Ousley M, Walker A, Shaw E, Morgan J.A. (2001) “Degradation of substituted phenylurea herbicides by Arthrobacter globiformis strain D47 and characterization of a plasmid-associated hydrolase gene, puhA”. Applied Environmental Microbiology.; 67(5):2270-5.