Journal of Applied & Environmental Microbiology
ISSN (Print): 2373-6747 ISSN (Online): 2373-6712 Website: Editor-in-chief: Sankar Narayan Sinha
Open Access
Journal Browser
Journal of Applied & Environmental Microbiology. 2017, 5(1), 31-46
DOI: 10.12691/jaem-5-1-4
Open AccessReview Article

Microbial β-Glucosidase: Sources, Production and Applications

Amer Ahmed1, , Faiz ul-Hassan Nasim2, Kashfa Batool2 and Aasia Bibi2

1Department of Biochemistry and Biotechnology, The Islamia University of Bahawalpur, Bahawalpur, Pakistan

2Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, Pakistan

Pub. Date: March 30, 2017

Cite this paper:
Amer Ahmed, Faiz ul-Hassan Nasim, Kashfa Batool and Aasia Bibi. Microbial β-Glucosidase: Sources, Production and Applications. Journal of Applied & Environmental Microbiology. 2017; 5(1):31-46. doi: 10.12691/jaem-5-1-4


Cellulose is the most abundant biopolymer in biosphere and the major constituent of plant biomass. Cellulose polymer is made up of β-glucose units linked by β-glucosidic bonds. Cellulase is an enzymatic system that catalyzes the hydrolysis of cellulose polymer to glucose monomers. This enzymatic system consists of three individual enzymes namely endoglucanase, exoglucanase and β-glucosidase which act synergistically to degrade cellulose molecules into glucose. Cellulases are produced by bacteria, fungi, plants, and animals and used in many industrial applications such as textile industries, laundry and detergent industries, paper and pulp industry, animal feeds, and biofuels production. β-Glucosidase is a diverse group of enzymes with wide distribution in bacteria, fungi, plants and animals and has the potential to be utilized in various biotechnological processes such as biofuel production, isoflavone hydrolysis, flavor enhancement and alkyl/aryl β-D-glucoside and oligosaccharides synthesis. Thus, there is increased demand of β-glucosidase production from microbial sources under profitable industrial conditions. In this review, β-glucosidase classification, localization, and mechanism of action will be described. Subsequently, the various sources of β-glucosidase for industrial sector will be discussed. Moreover, Fermentation methods and various parameters affecting β-glucosidase production will be highlighted on the light of recent findings of different researchers. Finally, β-glucosidase applications in biofuel production, flavors enhancement, isoflavones hydrolysis, cassava detoxification and oligosaccharide synthesis will be described.

cellulose glycoside hydrolase cellulase β-glucosidase biofuel transglycosylation

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


[1]  Zietsman AJ, de Klerk D, van Rensburg P: Coexpression of alpha-l-arabinofuranosidase and beta-glucosidase in Saccharomyces cerevisiae. FEMS Yeast Res 2011 Feb; 11(1): 88-103.
[2]  Tumuluru JS, Sokhansanj S, Wright CT, Boardman RD, Yancey NA: A review on biomass classification and composition, co-firing issues and pretreatment methods. In: Proceedings of the American Society of Agricultural and Biological Engineers Annual International Meeting: 2011: Citeseer; 2011: 2053-2083.
[3]  Scheller HV, Ulvskov P: Hemicelluloses. Annual Review of Plant Biology 2010, 61(1): 263-289.
[4]  Saxena RC, Adhikari DK, Goyal HB: Biomass-based energy fuel through biochemical routes: a review. Renewable and Sustainable Energy Reviews 2009, 13(1): 167-178.
[5]  Okoye I, Ezugwu A, Udenwobele D, Eze S, Anyawu C, Chilaka F: Production and Partial Characterization of Cellulases from Apergillus fumigatus Using Two Distinct Parts of Corn Cob as Carbon Sources. Nigerian Journal of Biotechnology 2014, 26(1): 50-59.
[6]  McKendry P: Energy production from biomass (part 1): overview of biomass. Bioresource technology 2002, 83(1): 37-46.
[7]  Harmsen P, Huijgen W, Bermudez L, Bakker R: Literature review of physical and chemical pretreatment processes for lignocellulosic biomass. 2010.
[8]  Biswas R, Persad A, Bisaria VS: Production of Cellulolytic Enzymes. Bioprocessing of Renewable Resources to Commodity Bioproducts 2014: 105-132.
[9]  Pütün A, Özcan A, Gercel H, Pütün E: Production of biocrudes from biomass in a fixed-bed tubular reactor: product yields and compositions. Fuel 2001, 80(10): 1371-1378.
[10]  Demirbaş A: Biomass resource facilities and biomass conversion processing for fuels and chemicals. Energy Conversion and Management 2001, 42(11): 1357-1378.
[11]  Sun Y, Cheng J: Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresource Technology 2002, 83(1): 1-11.
[12]  Lee J: Biological conversion of lignocellulosic biomass to ethanol. Journal of Biotechnology 1997, 56(1): 1-24.
[13]  Hill J, Nelson E, Tilman D, Polasky S, Tiffany D: Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proceedings of the National Academy of Sciences 2006, 103(30): 11206-11210.
[14]  Hahn-Hägerdal B, Galbe M, Gorwa-Grauslund MF, Lidén G, Zacchi G: Bio-ethanol – the fuel of tomorrow from the residues of today. Trends in Biotechnology 2006, 24(12): 549-556.
[15]  Gupta P, Samant K, Sahu A: Isolation of cellulose-degrading bacteria and determination of their cellulolytic potential. International journal of microbiology 2012, 2012.
[16]  Shahzadi T, Mehmood S, Irshad M, Anwar Z, Afroz A, Zeeshan N, Rashid U, Sughra K: Advances in lignocellulosic biotechnology: A brief review on lignocellulosic biomass and cellulases. Advances in Bioscience and Biotechnology 2014, 2014.
[17]  Maki M, Leung KT, Qin W: The prospects of cellulase-producing bacteria for the bioconversion of lignocellulosic biomass. International Journal of Biological Sciences 2009, 5(5): 500-516.
[18]  Lynd LR, Weimer PJ, Zyl WH, Isak S: Microbial cellulose utilization: fundamentals and biotechnology microbiology. Mole Biol Reviews 2002, 66.
[19]  Kamel S: Nanotechnology and its applications in lignocellulosic composites, a mini review. Express Polymer Letters 2007, 1(9): 546-575.
[20]  Agbor VB, Cicek N, Sparling R, Berlin A, Levin DB: Biomass pretreatment: fundamentals toward application. Biotechnology advances 2011, 29(6): 675-685.
[21]  Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J: Cellulose nanomaterials review: structure, properties and nanocomposites. Chemical Society Reviews 2011, 40(7): 3941-3994.
[22]  Kumar R, Singh S, Singh OV: Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. Journal of industrial microbiology & biotechnology 2008, 35(5): 377-391.
[23]  Anwar Z, Gulfraz M, Irshad M: Agro-industrial lignocellulosic biomass a key to unlock the future bio-energy: A brief review. Journal of Radiation Research and Applied Sciences 2014, 7(2): 163-173.
[24]  Tiwari P, Misra B, Sangwan NS: β-Glucosidases from the fungus Trichoderma: an efficient cellulase machinery in biotechnological applications. BioMed research international 2013, 2013.
[25]  Seo JK, Park TS, Kwon IH, Piao MY, Lee CH, Ha JK: Characterization of Cellulolytic and Xylanolytic Enzymes of Bacillus licheniformis JK7 Isolated from the Rumen of a Native Korean Goat. Asian Australas J Anim Sci 2013, 26(1): 50-58.
[26]  Lambertz C, Garvey M, Klinger J, Heesel D, Klose H, Fischer R, Commandeur U: Challenges and advances in the heterologous expression of cellulolytic enzymes: a review. Biotechnology for biofuels 2014, 7(1): 135.
[27]  Dashtban M, Maki M, Leung KT, Mao C, Qin W: Cellulase activities in biomass conversion: measurement methods and comparison. Crit Rev Biotechnol 2010, 30(4): 302-309.
[28]  Sukumaran RK, Singhania RR, Pandey A: Microbial cellulases-production, applications and challenges. Journal of Scientific and Industrial Research 2005, 64(11): 832.
[29]  Mussatto SI, Teixeira J: Lignocellulose as raw material in fermentation processes. Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology (Méndez-Vilas, A, Ed) 2010, 2: 897-907.
[30]  Kostylev M, Wilson D: Synergistic interactions in cellulose hydrolysis. Biofuels 2012, 3(1): 61-70.
[31]  Gaur R, Tiwari S: Isolation, production, purification and characterization of an organic-solvent-thermostable alkalophilic cellulase from Bacillus vallismortis RG-07. BMC Biotechnology 2015, 15(1): 1-12.
[32]  Aga A, Coh CC: Cellulosic ethanol production using a yeast consortium displaying a minicellulosome and β-glucosidase. Microb Cell Fact 2013, 12: 14.
[33]  Gao Z, Duong V, Le Thi HY, Katsuhiko A, Shuichi H, Ryuichiro K: The production of β-glucosidases by Fusarium proliferatum NBRC109045 isolated from Vietnamese forest. AMB Express 2012, 2(1): 49.
[34]  Sadhu S, Maiti TK: Cellulase production by bacteria: a review. British Microbiology Research Journal 2013, 3(3): 235-258.
[35]  Bhat MK, Bhat S: Cellulose degrading enzymes and their potential industrial applications. Biotechnol Adva 1997, 15.
[36]  Bhat MK: Cellulases and related enzymes in biotechnology. Biotechnol Adv 2000, 18(5): 355-383.
[37]  Zhang X-Z, Zhang Y-HP: Cellulases: Characteristics, Sources, Production, and Applications. Bioprocessing Technologies in Biorefinery for Sustainable Production of Fuels, Chemicals, and Polymers 2013: 131-146.
[38]  Sharada R, Venkateswarlu G, Venkateswar S, AnandRao M: APPLICATIONS OF CELLULASES–REVIEW. International Journal of Pharmaceutical, Chemical and Biological Sciences 2014, 4(2): 424-437.
[39]  Mojsov K: Application of enzymes in the textile industry: a review. 2011.
[40]  Kuhad RC, Gupta R, Singh A: Microbial cellulases and their industrial applications. Enzyme research 2011, 2011.
[41]  Zhou J, Bao L, Chang L, Liu Z, You C, Lu H: Beta-xylosidase activity of a GH3 glucosidase/xylosidase from yak rumen metagenome promotes the enzymatic degradation of hemicellulosic xylans. Lett Appl Microbiol 2012, 54(2): 79-87.
[42]  Yeoman CJ, Han Y, Dodd D, Schroeder CM, Mackie RI, Cann IKO: Thermostable Enzymes as Biocatalysts in the Biofuel Industry. Advances in applied microbiology 2010, 70: 1-55.
[43]  Krisch J, Takó M, Papp T, Vágvölgyi C: Characteristics and potential use of β-glucosidases from Zygomycetes. Current research, technology and education topics in applied microbiology and microbial biotechnology 2010.
[44]  Bhatia Y, Mishra S, Bisaria V: Microbial β-glucosidases: cloning, properties, and applications. Critical reviews in biotechnology 2002, 22(4): 375-407.
[45]  Sonia K, Chadha B, Badhan A, Saini H, Bhat M: Identification of glucose tolerant acid active β-glucosidases from thermophilic and thermotolerant fungi. World Journal of Microbiology and Biotechnology 2008, 24(5): 599-604.
[46]  Singhania RR, Patel AK, Sukumaran RK, Larroche C, Pandey A: Role and significance of beta-glucosidases in the hydrolysis of cellulose for bioethanol production. Bioresource Technology 2013, 127: 500-507.
[47]  Hays WS, VanderJagt DJ, Bose B, Serianni AS, Glew RH: Catalytic mechanism and specificity for hydrolysis and transglycosylation reactions of cytosolic β-glucosidase from guinea pig liver. Journal of Biological Chemistry 1998, 273(52): 34941-34948.
[48]  Veena V, Poornima P, Parvatham R, Kalaiselvi K: Isolation and characterization of β-glucosidase producing bacteria from different sources. African Journal of Biotechnology 2013, 10(66): 14891-14906.
[49]  Cairns JRK, Esen A: β-Glucosidases. Cellular and Molecular Life Sciences 2010, 67(20): 3389-3405.
[50]  Poulton JE: Cyanogenesis in plants. Plant physiology 1990, 94(2): 401-405.
[51]  Morant AV, Jørgensen K, Jørgensen C, Paquette SM, Sánchez-Pérez R, Møller BL, Bak S: β-Glucosidases as detonators of plant chemical defense. Phytochemistry 2008, 69(9): 1795-1813.
[52]  Hrmova M, MacGregor EA, Biely P, Stewart RJ, Fincher GB: Substrate binding and catalytic mechanism of a barley β-D-glucosidase/(1, 4)-β-D-glucan exohydrolase. Journal of Biological Chemistry 1998, 273(18): 11134-11143.
[53]  Hrmova M, Harvey AJ, Wang J, Shirley NJ, Jones GP, Stone BA, Hoj PB, Fincher GB: Barley beta-D-glucan exohydrolases with beta-D-glucosidase activity. Purification, characterization, and determination of primary structure from a cDNA clone. J Biol Chem 1996, 271(9): 5277-5286.
[54]  HÖSEL W, SURHOLT E, BORGMANN E: Characterization of β‐Glucosidase Isoenzymes Possibly Involved in Lignification from Chick Pea (Cicer arietinum L.) Cell Suspension Cultures. European Journal of Biochemistry 1978, 84(2): 487-492.
[55]  Dharmawardhana DP, Ellis BE, Carlson JE: A [beta]-Glucosidase from lodgepole pine xylem specific for the lignin precursor coniferin. Plant physiology 1995, 107(2): 331-339.
[56]  Schliemann W: Hydrolysis of Conjugated Gibberellins by β-Glucosidases from Dwarf Rice (Oryza sativa L. cv.«Tan-ginbozu»). Journal of plant physiology 1984, 116(2): 123-132.
[57]  Brzobohaty B, Moore I, Kristoffersen P, Bako L, Campos N, Schell J, Palme K: Release of active cytokinin by a beta-glucosidase localized to the maize root meristem. Science 1993, 262(5136): 1051-1054.
[58]  Stöckigt J, Zenk MH: Strictosidine (isovincoside): the key intermediate in the biosynthesis of monoterpenoid indole alkaloids. Journal of the Chemical Society, Chemical Communications 1977(18): 646-648.
[59]  Warzecha H, Gerasimenko I, Kutchan TM, Stöckigt J: Molecular cloning and functional bacterial expression of a plant glucosidase specifically involved in alkaloid biosynthesis. Phytochemistry 2000, 54(7): 657-666.
[60]  Ren JN, Yang ZY, Tai YN, Dong M, He MM, Fan G: Characteristics of β‐glucosidase from oranges during maturation and its relationship with changes in bound volatile compounds. Journal of the Science of Food and Agriculture 2014.
[61]  Gerardi C, Blando F, Santino A, Zacheo G: Purification and characterisation of a β-glucosidase abundantly expressed in ripe sweet cherry (Prunus avium L.) fruit. Plant Science 2001, 160(5): 795-805.
[62]  Lymar ES, Li B, Renganathan V: Purification and Characterization of a Cellulose-Binding (beta)-Glucosidase from Cellulose-Degrading Cultures of Phanerochaete chrysosporium. Applied and Environmental Microbiology 1995, 61(8): 2976-2980.
[63]  Igarashi K, Tani T, Rie K, Masahiro S: Family 3 beta-glucosidase from cellulose-degrading culture of the white-rot fungus Phanerochaete chrysosporium is a glucan 1,3-beta-glucosidase. J Biosci Bioeng 2003, 95(6): 572-576.
[64]  Fowler T, Brown RD: The bgI1 gene encoding extracellular β‐glucosidase from Trichoderma reesei is required for rapid induction of the cellulase complex. Molecular microbiology 1992, 6(21): 3225-3235.
[65]  Doi RH, Kosugi A: Cellulosomes: plant-cell-wall-degrading enzyme complexes. Nature Reviews Microbiology 2004, 2(7): 541-551.
[66]  Lieberman RL, Wustman BA, Huertas P, Powe AC, Pine CW, Khanna R, Schlossmacher MG, Ringe D, Petsko GA: Structure of acid β-glucosidase with pharmacological chaperone provides insight into Gaucher disease. Nature chemical biology 2007, 3(2): 101-107.
[67]  Butters TD: Gaucher disease. Current opinion in chemical biology 2007, 11(4): 412-418.
[68]  Sternberg D, Vuayakumar P, Reese E: β-Glucosidase: microbial production and effect on enzymatic hydrolysis of cellulose. Canadian Journal of Microbiology 1977, 23(2): 139-147.
[69]  Coughlan MP: The properties of fungal and bacterial cellulases with comment on their production and application. Biotechnology and genetic engineering reviews 1985, 3(1): 39-110.
[70]  Gueguen Y, Chemardin P, Janbon G, Arnaud A, Galzy P: Investigation of the β-glucosidases potentialities of yeast strains and application to bound aromatic terpenols liberation. In: Studies in Organic Chemistry. Edited by K. Kieslich CPvdBJAMdB, Tweel WJJvd, vol. Volume 53: Elsevier; 1998: 149-157.
[71]  Pham TT, Shah NP: HYDROLYSIS OF ISOFLAVONE GLYCOSIDES IN SOY MILK BY β‐GALACTOSIDASE AND β‐GLUCOSIDASE. Journal of food biochemistry 2009, 33(1): 38-60.
[72]  Pandjaitan N, Hettiarachchy N, Ju Z: Enrichment of Genistein in Soy Protein Concentrate with b‐glucosidase. Journal of food science 2000, 65(3): 403-407.
[73]  Michlmayr H, Kneifel W: β-Glucosidase activities of lactic acid bacteria: mechanisms, impact on fermented food and human health. FEMS microbiology letters 2014, 352(1): 1-10.
[74]  Obilie EM, Tano-Debrah K, Amoa-Awua WK: Souring and breakdown of cyanogenic glucosides during the processing of cassava into akyeke. International journal of food microbiology 2004, 93(1): 115-121.
[75]  Gueguen Y, Chemardin P, Labrot P, Arnaud A, Galzy P: Purification and characterization of an intracellular b-glucosidase from a new strain of Leuconostoc mesenteroides isolated from cassava. Journal of Applied Microbiology 1997, 82(4): 469-476.
[76]  Petruccioli M, Brimer L, Cicalini A, Federici F: The linamarase of Mucor circinelloides LU M40 and its detoxifying activity on cassava. Journal of Applied Microbiology 1999, 86(2): 302-310.
[77]  Elliston A, Collins SRA, Wilson DR, Roberts IN, Waldron KW: High concentrations of cellulosic ethanol achieved by fed batch semi simultaneous saccharification and fermentation of waste-paper. Bioresource technology 2013, 134: 117-126.
[78]  Yang JL, Ma J, Pierce JM, Eriksson K-EL: Composition for enzymatic deinking of waste paper. In.: Google Patents; 2004.
[79]  Hansson T, Kaper T, van der Oost J, de Vos WM, Adlercreutz P: Improved oligosaccharide synthesis by protein engineering of beta-glucosidase CelB from hyperthermophilic Pyrococcus furiosus. Biotechnology and bioengineering 2001, 73(3): 203-210.
[80]  Ravet C, Thomas D, Legoy MD: Glucooligosaccharide synthesis by free and immobilized beta-glucosidase. Biotechnology and bioengineering 1993, 42(3): 303-308.
[81]  Bruins ME, Strubel M, van Lieshout JFT, Janssen AEM, Boom RM: Oligosaccharide synthesis by the hyperthermostable beta-glucosidase from Pyrococcus furiosus: kinetics and modelling. Enzyme and Microbial Technology 2003, 33(1): 3-11.
[82]  Kuptsova OS, Kliachko NL, levashov AV: [Synthesis of alkyl glycosides, catalyzed by beta-glycosidases in a reversed micelle system]. Bioorg Khim 2001 Nov-Dec;27(6): 429-33 2001.
[83]  Bankova E, Bakalova N, Petrova S, Kolev D: Enzymatic synthesis of oligosaccharides and alkylglycosides in water-organic media via transglycosylation of lactose. Biotechnology & Biotechnological Equipment 2006, 20(3): 114-119.
[84]  Seeberger PH, Werz DB: Synthesis and medical applications of oligosaccharides. Nature 2007, 446(7139): 1046-1051.
[85]  Lehmann R, Hachmann K, Biermann M, Schnegelberger H: Alkyl gylcosides as potentiating agents in antiseptic compositions. In.: Google Patents; 1990.
[86]  Maggio ET: Alkylglycoside compositions for drug administration. In.: Google Patents; 2012.
[87]  Klueppel H-J, Foerg F: Alkylglycosides. In.: Google Patents; 1992.
[88]  Mfombep PM, Senwo ZN, Isikhuemhen OS: Enzymatic activities and kinetic properties of β-glucosidase from selected white rot fungi. 2013.
[89]  Yang Y, Zhang X, Yin Q, Fang W, Fang Z, Wang X, Zhang X, Xiao Y: A mechanism of glucose tolerance and stimulation of GH1 β-glucosidases. Scientific Reports 2015, 5: 17296.
[90]  Sørensen A, Lübeck M, Lübeck PS, Ahring BK: Fungal beta-glucosidases: a bottleneck in industrial use of lignocellulosic materials. Biomolecules 2013, 3(3): 612-631.
[91]  Rani V, Mohanram S, Tiwari R, Nain L, Arora A: Beta-Glucosidase: Key Enzyme in Determining Efficiency of Cellulase and Biomass Hydrolysis. J Bioprocess Biotech 2014, 5(197): 2.
[92]  Iwashita K, Nagahara T, Kimura H, Takano M, Shimoi H, Ito K: The bglA Gene of Aspergillus kawachii Encodes Both Extracellular and Cell Wall-Bound β-Glucosidases. Applied and Environmental Microbiology 1999, 65(12): 5546-5553.
[93]  Hrmova M, De Gori R, Smith BJ, Fairweather JK, Driguez H, Varghese JN, Fincher GB: Structural Basis for Broad Substrate Specificity in Higher Plant β-d-Glucan Glucohydrolases. The Plant Cell 2002, 14(5): 1033-1052.
[94]  Langston J, Sheehy N, Xu F: Substrate specificity of Aspergillus oryzae family 3 β-glucosidase. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics 2006, 1764(5): 972-978.
[95]  Henrissat B: A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 1991 Dec 1;280 (Pt 2): 309-16 1991.
[96]  Riou C, Salmon J-M, Vallier M-J, Günata Z, Barre P: Purification, characterization, and substrate specificity of a novel highly glucose-tolerant β-glucosidase fromAspergillus oryzae. Applied and Environmental Microbiology 1998, 64(10): 3607-3614.
[97]  Bohlin C, Praestgaard E, Baumann MJ, Borch K, Praestgaard J, Monrad RN, Westh P: A comparative study of hydrolysis and transglycosylation activities of fungal β-glucosidases. Applied microbiology and biotechnology 2013, 97(1): 159-169.
[98]  Günata Z, Vallier M-j: Production of a highly glucose-tolerant extracellular β-glucosidase by three Aspergillus strains. Biotechnology letters 1999, 21(3): 219-223.
[99]  Raza F, Raza NA, Hameed U: Solid state fermentation for the production of β-glucosidase by co-culture of Aspergillus niger and A. oryzae. Pak J Bot 2011, 43: 75-83.
[100]  Nijikken Y, Tsukada T, Igarashi K, Samejima M, Wakagi T, Shoun H, Fushinobu S: Crystal structure of intracellular family 1 β-glucosidase BGL1A from the basidiomycete Phanerochaete chrysosporium. FEBS letters 2007, 581(7): 1514-1520.
[101]  Zhou Q, Xu J, Kou Y, Lv X, Zhang X, Zhao G, Zhang W, Chen G, Liu W: Differential involvement of β-glucosidases from Hypocrea jecorina in rapid induction of cellulase genes by cellulose and cellobiose. Eukaryotic cell 2012, 11(11): 1371-1381.
[102]  Saloheimo M, Kuja-Panula J, Ylösmäki E, Ward M, Penttilä M: Enzymatic properties and intracellular localization of the novel Trichoderma reesei β-glucosidase BGLII (Cel1A). Applied and Environmental Microbiology 2002, 68(9): 4546-4553.
[103]  Paavilainen S, Hellman J, Korpela T: Purification, characterization, gene cloning, and sequencing of a new beta-glucosidase from Bacillus circulans subsp. alkalophilus. Applied and Environmental Microbiology 1993, 59(3): 927-932.
[104]  Bajaj BK, Pangotra H, Wani MA, Sharma A, Sharma P: Characterization of thermo-tolerant and acid/alkali tolerant β-glucosidase from bacterial isolate M+. J Sci Ind Res 2009, 68: 242-247.
[105]  Agrawal R, Satlewal A, Verma AK: Development of a β-glucosidase hyperproducing mutant by combined chemical and UV mutagenesis. 3 Biotech 2013, 3(5): 381-388.
[106]  Saha BC, Bothast RJ: Production, purification, and characterization of a highly glucose-tolerant novel beta-glucosidase from Candida peltata. Applied and Environmental Microbiology 1996, 62(9): 3165-3170.
[107]  Rosi I, Vinella M, Domizio P: Characterization of β‐glucosidase activity in yeasts of oenological origin. Journal of Applied Bacteriology 1994, 77(5): 519-527.
[108]  Hernández LF, Espinosa JC, Fernández-González M, Briones A: β-Glucosidase activity in a Saccharomyces cerevisiae wine strain. International Journal of Food Microbiology 2003, 80(2): 171-176.
[109]  Qi M, Jun H-S, Forsberg CW: Cel9D, an Atypical 1,4-β-d-Glucan Glucohydrolase from Fibrobacter succinogenes: Characteristics, Catalytic Residues, and Synergistic Interactions with Other Cellulases. Journal of bacteriology 2008, 190(6): 1976-1984.
[110]  Zechel DL, Withers SG: Glycosidase Mechanisms:   Anatomy of a Finely Tuned Catalyst. Accounts of Chemical Research 2000, 33(1): 11-18.
[111]  Withers SG, Street IP: beta-Glucosidases: mechanism and inhibition. In: ACS Symposium series-American Chemical Society (USA): 1989; 1989.
[112]  Li YK, Chir J, Chen FY: Catalytic mechanism of a family 3 beta-glucosidase and mutagenesis study on residue Asp-247. Biochemical journal 2001, 355(Pt 3): 835-840.
[113]  Thongpoo P, McKee LS, Araújo AC, Kongsaeree PT, Brumer H: Identification of the acid/base catalyst of a glycoside hydrolase family 3 (GH3) β-glucosidase from Aspergillus niger ASKU28. Biochimica et Biophysica Acta (BBA) - General Subjects 2013, 1830(3): 2739-2749.
[114]  Paal K, Ito M, Withers SG: Paenibacillus sp. TS12 glucosylceramidase: kinetic studies of a novel sub-family of family 3 glycosidases and identification of the catalytic residues. Biochemical Journal 2004, 378(1): 141-149.
[115]  Dan S, Marton I, Dekel M, Bravdo B-A, He S, Withers SG, Shoseyov O: Cloning, Expression, Characterization, and Nucleophile Identification of Family 3, Aspergillus nigerβ-Glucosidase. Journal of Biological Chemistry 2000, 275(7): 4973-4980.
[116]  Wang Q, Trimbur D, Graham R, Warren R, Withers S: Identification of the Acid/Base Catalyst in Agrobacterium faecalis. beta.-Glucosidase by Kinetic Analysis of Mutants. Biochemistry 1995, 34(44): 14554-14562.
[117]  Vallmitjana M, Ferrer-Navarro M, Planell R, Abel M, Ausín C, Querol E, Planas A, Pérez-Pons J-A: Mechanism of the family 1 β-glucosidase from Streptomyces sp: catalytic residues and kinetic studies. Biochemistry 2001, 40(20): 5975-5982.
[118]  Li Y-Y, Jiang C-J, Wan X-C, Zhang Z-Z, Li D-X: Purification and partial characterization of β-glucosidase from fresh leaves of tea plants (Camellia sinensis (L.) O. Kuntze). Acta biochimica et biophysica Sinica 2005, 37(6): 363-370.
[119]  Pontoh J, Low N: Purification and characterization of β-glucosidase from honey bees (Apis mellifera). Insect biochemistry and molecular biology 2002, 32(6): 679-690.
[120]  Nigam PS: Microbial enzymes with special characteristics for biotechnological applications. Biomolecules 2013, 3(3): 597-611.
[121]  Sundarram A, Murthy TPK: α-amylase production and applications: A review. Journal of Applied & Environmental Microbiology 2014, 2(4): 166-175.
[122]  Amore A, Giacobbe S, Faraco V: Regulation of cellulase and hemicellulase gene expression in fungi. Current genomics 2013, 14(4): 230-249.
[123]  Chen H, Hayn M, Esterbauer H: Purification and characterization of two extracellular β-glucosidases from Trichoderma reesei. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology 1992, 1121(1-2): 54-60.
[124]  Pitson SM, Seviour RJ, McDougall BM: Purification and characterization of an extracellular β-glucosidase from the filamentous fungus Acremonium persicinum and its probable role in β-glucan degradation. Enzyme and Microbial Technology 1997, 21(3): 182-190.
[125]  Lin J, Pillay B, Singh S: Purification and biochemical characteristics of β‐D‐glucosidase from a thermophilic fungus, Thermomyces lanuginosus–SSBP. Biotechnology and applied biochemistry 1999, 30(1): 81-87.
[126]  PARRY NJ, BEEVER DE, Emyr O, VANDENBERGHE I, Van Beeumen J: Biochemical characterization and mechanism of action of a thermostable β-glucosidase purified from Thermoascus aurantiacus. Biochemical journal 2001, 353(1): 117-127.
[127]  Venturi LL, de Lourdes Polizeli M, Terenzi HF, dos Prazeres Melo Furriel R, Jorge JA: Extracellular β-D-glucosidase from Chaetomium thermophilum var. coprophilum: production, purification and some biochemical properties. Journal of basic microbiology 2002, 42(1): 55.
[128]  Dhake A, Patil M: Production of ß-Glucosidase by Penicillium purpurogenum. Brazilian Journal of Microbiology 2005, 36(2): 170-176.
[129]  Karnchanatat A, Petsom A, Sangvanich P, Piaphukiew J, Whalley AJ, Reynolds CD, Sihanonth P: Purification and biochemical characterization of an extracellular β-glucosidase from the wood-decaying fungus Daldinia eschscholzii (Ehrenb.: Fr.) Rehm. FEMS Microbiology Letters 2007, 270(1): 162-170.
[130]  Kaur J, Chadha BS, Kumar BA, Kaur G, Saini HS: Purification and characterization of ß-glucosidase from Melanocarpus sp. MTCC 3922. Electronic Journal of Biotechnology 2007, 10(2): 260-270.
[131]  Chen H-L, Chen Y-C, Lu M-YJ, Chang J-J, Wang H-TC, Ke H-M, Wang T-Y, Ruan S-K, Wang T-Y, Hung K-Y et al: A highly efficient β-glucosidase from the buffalo rumen fungus Neocallimastix patriciarum W5. Biotechnology for Biofuels 2012, 5(1): 24.
[132]  Daroit DJ, Simonetti A, Hertz PF, Brandelli A: Purification and characterization of an extracellular beta-glucosidase from Monascus purpureus. Journal of Microbiology and Biotechnology 2008, 18(5): 933-941.
[133]  Yoon J-J, Kim K-Y, Cha C-J: Purification and characterization of thermostable β-glucosidase from the brown-rot basidiomycete Fomitopsis palustris grown on microcrystalline cellulose. The Journal of Microbiology 2008, 46(1): 51-55.
[134]  Jeya M, Joo A-R, Lee K-M, Tiwari MK, Lee K-M, Kim S-H, Lee J-K: Characterization of β-glucosidase from a strain of Penicillium purpurogenum KJS506. Applied microbiology and biotechnology 2010, 86(5): 1473-1484.
[135]  Choi J-Y, Park A-R, Kim YJ, Kim J-J, Cha C-J, Yoon J-J: Purification and characterization of an extracellular beta-glucosidase produced by Phoma sp. KCTC11825BP isolated from rotten mandarin peel. Journal of microbiology and biotechnology 2011, 21(5): 503-508.
[136]  Liu D, Zhang R, Yang X, Zhang Z, Song S, Miao Y, Shen Q: Characterization of a thermostable β-glucosidase from Aspergillus fumigatus Z5, and its functional expression in Pichia pastoris X33. Microbial cell factories 2012, 11(1): 1.
[137]  Park A-R, Hong JH, Kim J-J, Yoon J-J: Biochemical characterization of an extracellular β-glucosidase from the fungus, Penicillium italicum, isolated from rotten citrus peel. Mycobiology 2012, 40(3): 173-180.
[138]  Sørensen A, Andersen JJ, Ahring BK, Teller PJ, Lübeck M: Screening of carbon sources for beta-glucosidase production by Aspergillus saccharolyticus. International Biodeterioration & Biodegradation 2014, 93: 78-83.
[139]  Sørensen A, Ahring BK, Lübeck M, Ubhayasekera W, Bruno KS, Culley DE, Lübeck PS: Identifying and characterizing the most significant β-glucosidase of the novel species Aspergillus saccharolyticus. Canadian journal of microbiology 2012, 58(9): 1035-1046.
[140]  Abdel-Naby MA, Osman MY, Abdel-Fattah AF: Purification and properties of three cellobiases from Aspergillus niger A20. Applied biochemistry and biotechnology 1999, 76(1): 33-44.
[141]  Bhatti HN, Batool S, Afzal N: Production and Characterization of a Novel β-Glucosidase from Fusarium solani. International Journal of Agriculture & Biology 2013, 15(1).
[142]  Mallerman J, Papinutti L, Levin L: Characterization of β-Glucosidase Produced by the White Rot Fungus Flammulina velutipes. J Microbiol Biotechnol 2015, 25(1): 57-65.
[143]  Dikshit R, Tallapragada P: Partial Purification and Characterization of β-glucosidase from Monascus sanguineus. Brazilian Archives of Biology and Technology 2015, 58(2): 185-191.
[144]  Hernández‐Guzmán A, Flores‐Martínez A, Ponce‐Noyola P, Villagómez‐Castro JC: Purification and characterization of an extracellular β‐glucosidase from Sporothrix schenckii. FEBS Open Bio 2016, 6(11): 1067-1077.
[145]  Santos F, Garcia NFL, da Paz MF, Fonseca GG, Leite RSR: Production and characterization of β-glucosidase from Gongronella butleri by solid-state fermentation. African Journal of Biotechnology 2016, 15(16): 633-641.
[146]  Olajuyigbe FM, Nlekerem CM, Ogunyewo OA: Production and Characterization of Highly Thermostable β-Glucosidase during the Biodegradation of Methyl Cellulose by Fusarium oxysporum. Biochemistry research international 2016, 2016.
[147]  Sethi S, Datta A, Gupta BL, Gupta S: Optimization of cellulase production from bacteria isolated from soil. ISRN biotechnology 2013, 2013.
[148]  Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS: Microbial Cellulose Utilization: Fundamentals and Biotechnology. Microbiology and Molecular Biology Reviews 2002, 66(3): 506-577.
[149]  Ariffin H, Abdullah N, Umi Kalsom M, Shirai Y, Hassan M: Production and characterization of cellulase by Bacillus pumilus EB3. Int J Eng Technol 2006, 3(1): 47-53.
[150]  Ait N, Creuzet N, Cattaneo J: Properties of β-glucosidase purified from Clostridium thermocellum. Microbiology 1982, 128(3): 569-577.
[151]  Kengen SW, Luesink EJ, STAMS AJ, ZEHNDER AJ: Purification and characterization of an extremely thermostable β‐glucosidase from the hyperthermophilic archaeon Pyrococcus furiosus. European Journal of Biochemistry 1993, 213(1): 305-312.
[152]  Okamoto K, Nakano H, Yatake T, Kiso T, Kitahata S: Purification and some properties of a β-glucosidase from Flavobacterium johnsonae. Bioscience, biotechnology, and biochemistry 2000, 64(2): 333-340.
[153]  Spiridonov NA, Wilson DB: Cloning and biochemical characterization of BglC, a β-glucosidase from the cellulolytic actinomycete Thermobifida fusca. Current microbiology 2001, 42(4): 295-301.
[154]  Cristóbal HA, Schmidt A, Kothe E, Breccia J, Abate CM: Characterization of inducible cold-active β-glucosidases from the psychrotolerant bacterium Shewanella sp. G5 isolated from a sub-Antarctic ecosystem. Enzyme and microbial technology 2009, 45(6): 498-506.
[155]  Michlmayr H, Schümann C, Barreira Braz Da Silva N, Kulbe K, Del Hierro A: Isolation and basic characterization of a β‐glucosidase from a strain of Lactobacillus brevis isolated from a malolactic starter culture. Journal of applied microbiology 2010, 108(2): 550-559.
[156]  Hong M-R, Kim Y-S, Park C-S, Lee J-K, Kim Y-S, Oh D-K: Characterization of a recombinant β-glucosidase from the thermophilic bacterium Caldicellulosiruptor saccharolyticus. Journal of bioscience and bioengineering 2009, 108(1): 36-40.
[157]  An D-S, Cui C-H, Lee H-G, Wang L, Kim SC, Lee S-T, Jin F, Yu H, Chin Y-W, Lee H-K: Identification and characterization of a novel Terrabacter ginsenosidimutans sp. nov. β-glucosidase that transforms ginsenoside Rb1 into the rare gypenosides XVII and LXXV. Applied and Environmental Microbiology 2010, 76(17): 5827-5836.
[158]  Pei J, Pang Q, Zhao L, Fan S, Shi H: Thermoanaerobacterium thermosaccharolyticum β-glucosidase: a glucose-tolerant enzyme with high specific activity for cellobiose. Biotechnology for Biofuels 2012, 5(1): 1.
[159]  Du J, Cui C-H, Park SC, Kim J-K, Yu H-S, Jin F-X, Sun C, Kim S-C, Im W-T: Identification and Characterization of a Ginsenoside-Transforming β-Glucosidase from Pseudonocardia sp. Gsoil 1536 and Its Application for Enhanced Production of Minor Ginsenoside Rg 2 (S). PloS one 2014, 9(6): e96914.
[160]  Singh BK: Exploring microbial diversity for biotechnology: the way forward. Trends in Biotechnology 2010, 28(3): 111-116.
[161]  Ferrer M, Beloqui A, Timmis KN, Golyshin PN: Metagenomics for mining new genetic resources of microbial communities. Journal of molecular microbiology and biotechnology 2009, 16 (1-2): 109-123.
[162]  Simon C, Daniel R: Metagenomic Analyses: Past and Future Trends. Applied and environmental microbiology 2011, 77(4): 1153-1161.
[163]  Singh J, Behal A, Singla N, Joshi A, Birbian N, Singh S, Bali V, Batra N: Metagenomics: Concept, methodology, ecological inference and recent advances. Biotechnology Journal 2009, 4(4): 480-494.
[164]  Handelsman J: Metagenomics: application of genomics to uncultured microorganisms. Microbiology and molecular biology reviews 2004, 68(4): 669-685.
[165]  Rooks DJ, McDonald JE, McCarthy AJ: Metagenomic approaches to the discovery of cellulases. Methods Enzymol 2012, 510: 375-394.
[166]  Thomas T, Gilbert J, Meyer F: Metagenomics-a guide from sampling to data analysis. Microb Inform Exp 2012, 2(3): 1-12.
[167]  Uchiyama T, Miyazaki K: Functional metagenomics for enzyme discovery: challenges to efficient screening. Current Opinion in Biotechnology 2009, 20(6): 616-622.
[168]  Wang Q, Qian C, Zhang X-Z, Liu N, Yan X, Zhou Z: Characterization of a novel thermostable β-glucosidase from a metagenomic library of termite gut. Enzyme and microbial technology 2012, 51(6): 319-324.
[169]  Kim S-J, Lee C-M, Kim M-Y, Yeo Y-S, Yoon S-H, Kang H-C, Koo B-S: Screening and characterization of an enzyme with beta-glucosidase activity from environmental DNA. Journal of microbiology and biotechnology 2007, 17(6): 905-912.
[170]  Li G, Jiang Y, Fan X-j, Liu Y-h: Molecular cloning and characterization of a novel β-glucosidase with high hydrolyzing ability for soybean isoflavone glycosides and glucose-tolerance from soil metagenomic library. Bioresource technology 2012, 123: 15-22.
[171]  Biver S, Stroobants A, Portetelle D, Vandenbol M: Two promising alkaline β-glucosidases isolated by functional metagenomics from agricultural soil, including one showing high tolerance towards harsh detergents, oxidants and glucose. Journal of industrial microbiology & biotechnology 2014, 41(3): 479-488.
[172]  Lu J, Du L, Wei Y, Hu Y, Huang R: Expression and characterization of a novel highly glucose-tolerant β-glucosidase from a soil metagenome. Acta biochimica et biophysica Sinica 2013: gmt061.
[173]  Gomes-Pepe ES, Machado Sierra EG, Pereira MR, Castellane TCL, Lemos EGdM: Bg10: A Novel Metagenomics Alcohol-Tolerant and Glucose-Stimulated GH1 ß-Glucosidase Suitable for Lactose-Free Milk Preparation. PloS one 2016, 11(12): e0167932.
[174]  Uchiyama T, Miyazaki K, Yaoi K: Characterization of a novel β-glucosidase from a compost microbial metagenome with strong transglycosylation activity. Journal of Biological Chemistry 2013, 288(25): 18325-18334.
[175]  Del Pozo MV, Fernández-Arrojo L, Gil-Martínez J, Montesinos A, Chernikova TN, Nechitaylo TY, Waliszek A, Tortajada M, Rojas A, Huws SA: Microbial β-glucosidases from cow rumen metagenome enhance the saccharification of lignocellulose in combination with commercial cellulase cocktail. Biotechnology for Biofuels 2012, 5(1): 1.
[176]  Feng Y, Duan C-J, Liu L, Tang J-L, Feng J-X: Properties of a metagenome-derived β-glucosidase from the contents of rabbit cecum. Bioscience, biotechnology, and biochemistry 2009, 73(7): 1470-1473.
[177]  Guo H, Feng Y, Mo X, Duan C, Tang J, Feng J: Cloning and expression of a beta-glucosidase gene umcel3G from metagenome of buffalo rumen and characterization of the translated product. Sheng wu gong cheng xue bao= Chinese journal of biotechnology 2008, 24(2): 232-238.
[178]  Jiang C, Hao Z-Y, Jin K, Li S-X, Che Z-Q, Ma G-F, Wu B: Identification of a metagenome-derived β-glucosidase from bioreactor contents. Journal of Molecular Catalysis B: Enzymatic 2010, 63(1): 11-16.
[179]  Uchiyama T, Yaoi K, Miyazaki K: Glucose-tolerant β-glucosidase retrieved from a Kusaya gravy metagenome. Frontiers in Microbiology 2015, 6: 548.
[180]  Fang Z, Fang W, Liu J, Hong Y, Peng H, Zhang X, Sun B, Xiao Y: Cloning and characterization of a β-glucosidase from marine microbial metagenome with excellent glucose tolerance. J Microbiol Biotechnol 2010, 20(9): 1351-1358.
[181]  Wierzbicka-Woś A, Bartasun P, Cieśliński H, Kur J: Cloning and characterization of a novel cold-active glycoside hydrolase family 1 enzyme with β-glucosidase, β-fucosidase and β-galactosidase activities. BMC Biotechnology 2013, 13(1): 1.
[182]  Schröder C, Elleuche S, Blank S, Antranikian G: Characterization of a heat-active archaeal β-glucosidase from a hydrothermal spring metagenome. Enzyme and microbial technology 2014, 57: 48-54.
[183]  Jiang C, Li S-X, Luo F-F, Jin K, Wang Q, Hao Z-Y, Wu L-L, Zhao G-C, Ma G-F, Shen P-H: Biochemical characterization of two novel β-glucosidase genes by metagenome expression cloning. Bioresource technology 2011, 102(3): 3272-3278.
[184]  Bergmann JC, Costa OYA, Gladden JM, Singer S, Heins R, D'Haeseleer P, Simmons BA, Quirino BF: Discovery of two novel β-glucosidases from an Amazon soil metagenomic library. FEMS Microbiology Letters 2014, 351(2): 147-155.
[185]  Li Y, Liu N, Yang H, Zhao F, Yu Y, Tian Y, Lu X: Cloning and characterization of a new β-Glucosidase from a metagenomic library of Rumen of cattle feeding with Miscanthus sinensis. BMC Biotechnology 2014, 14(1): 1.
[186]  Mai Z, Su H, Zhang S: Characterization of a Metagenome-Derived β-Glucosidase and Its Application in Conversion of Polydatin to Resveratrol. Catalysts 2016, 6(3): 35.
[187]  Martinez D, Berka RM, Henrissat B, Saloheimo M, Arvas M, Baker SE, Chapman J, Chertkov O, Coutinho PM, Cullen D et al: Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nat Biotech 2008, 26(5): 553-560.
[188]  Stutzenberger F: Thermostable fungal β‐glucosidases. Letters in applied microbiology 1990, 11(4): 173-178.
[189]  Baraldo Junior A, Borges DG, Tardioli PW, Farinas CS: Characterization of β-Glucosidase Produced by Aspergillus niger under Solid-State Fermentation and Partially Purified Using MANAE-Agarose. Biotechnology research international 2014, 2014.
[190]  Pandey A, Selvakumar P, Soccol CR, Nigam P: Solid state fermentation for the production of industrial enzymes. Current science 1999, 77(1): 149-162.
[191]  Coradi GV, Da Visitação VL, De Lima EA, Saito LYT, Palmieri DA, Takita MA, de Oliva Neto P, De Lima VMG: Comparing submerged and solid-state fermentation of agro-industrial residues for the production and characterization of lipase by Trichoderma harzianum. Annals of Microbiology 2013, 63(2): 533-540.
[192]  Brijwani K, Vadlani PV: Cellulolytic enzymes production via solid-state fermentation: effect of pretreatment methods on physicochemical characteristics of substrate. Enzyme research 2011, 2011.
[193]  Kovács K, Megyeri L, Szakacs G, Kubicek CP, Galbe M, Zacchi G: Trichoderma atroviride mutants with enhanced production of cellulase and β-glucosidase on pretreated willow. Enzyme and Microbial Technology 2008, 43(1): 48-55.
[194]  Hölker U, Lenz J: Solid-state fermentation—are there any biotechnological advantages? Current Opinion in Microbiology 2005, 8(3): 301-306.
[195]  Viniegra-González G, Favela-Torres E, Aguilar CN, de Jesus Rómero-Gomez S, Dıaz-Godınez G, Augur C: Advantages of fungal enzyme production in solid state over liquid fermentation systems. Biochemical Engineering Journal 2003, 13(2): 157-167.
[196]  Subramaniyam R, Vimala R: Solid state and submerged fermentation for the production of bioactive substances: A comparative study. Int J Sci Nat 2012, 3: 480-486.
[197]  Acuña-Argüelles M, Gutiérrez-Rojas M, Viniegra-González G, Favela-Torres E: Production and properties of three pectinolytic activities produced byAspergillus niger in submerged and solid-state fermentation. Applied microbiology and biotechnology 1995, 43(5): 808-814.
[198]  Zhang Y, Yuan L, Chen Z, Fu L, Lu J, Meng Q, He H, Yu X, Lin F, Teng L: Purification and characterization of beta-glucosidase from a newly isolated strain Tolypocladium cylindrosporum Syzx4. Chem Res Chin Univ 2011, 27: 557-561.
[199]  Bai H, Wang H, Sun J, Irfan M, Han M, Huang Y, Han X, Yang Q: Production, purification and characterization of novel beta glucosidase from newly isolated Penicillium simplicissimum H-11 in submerged fermentation. EXCLI journal 2013, 12: 528.
[200]  Elyas K, Mathew A, Sukumaran RK, Ali PM, Sapna K, Kumar SR, Mol KR: Production optimization and properties of beta glucosidases from a marine fungus Aspergillus-SA 58. New biotechnology 2010, 27(4): 347-351.
[201]  Ng IS, Li C-W, Chan S-P, Chir J-L, Chen PT, Tong C-G, Yu S-M, Ho T-HD: High-level production of a thermoacidophilic β-glucosidase from Penicillium citrinum YS40-5 by solid-state fermentation with rice bran. Bioresource technology 2010, 101(4): 1310-1317.
[202]  Bhatti HN, Batool S, Afzal N: Production and characterization of a novel β-glucosidase from Fusarium solani. International Journal of Agriculture and Biology 2013, 15(1): 140-144.
[203]  Raza F, Raza NA, Hameed U, Haq I, Maryam I: Solid state fermentation for the production of β-glucosidase by co-culture of Aspergillus niger and A. oryzae. Pak J Bot 2011, 43: 75-83.
[204]  Vaithanomsat P, Songpim M, Malapant T, Kosugi A, Thanapase W, Mori Y: Production of β-glucosidase from a newly isolated aspergillus species using response surface methodology. International journal of microbiology 2011, 2011.
[205]  Qian L-C, Fu S-J, Zhou H-M, Sun J-Y, Weng X-Y: Optimization of fermentation parameters for β-glucosidase production by Aspergillus niger. J Anim Vet Adv 2012, 11: 583-591.
[206]  El-Naggar NE-A, Haroun S, Owis E, Sherief A: Optimization of β-Glucosidase Production by Aspergillus terreus Strain EMOO 6-4 Using Response Surface Methodology Under Solid-State Fermentation. Preparative Biochemistry and Biotechnology 2015, 45(6): 568-587.
[207]  De Cassia Pereira J, Leite RSR, do Prado HFA, Bocchini Martins DA, Gomes E, da Silva R: Production and Characterization of β-glucosidase Obtained by the Solid-State Cultivation of the Thermophilic Fungus Thermomucor indicae-seudaticae N31. Applied biochemistry and biotechnology 2015, 175(2): 723-732.
[208]  Ling H, Ge J, Ping W, Xu X: [Fermentation optimization by response surface methodology for enhanced production of beta-glucosidase of Aspergillus niger HDF05]. Sheng wu gong cheng xue bao= Chinese journal of biotechnology 2011, 27(3): 419-426.
[209]  Beitel SM, Knob A: Penicillium miczynskii β-glucosidase: a glucose-tolerant enzyme produced using pineapple peel as substrate. Industrial Biotechnology 2013, 9(5): 293-300.
[210]  Saha BC, Freer SN, Bothast RJ: Production, purification, and properties of a thermostable β-glucosidase from a color variant strain of Aureobasidium pullulans. Applied and Environmental Microbiology 1994, 60(10): 3774-3780.
[211]  Rajoka M, Khan S, Latif F, Shahid R: Influence of carbon and nitrogen sources and temperature on hyperproduction of a thermotolerant β-glucosidase from synthetic medium by Kluyveromyces marxianus. Applied biochemistry and biotechnology 2004, 117(2): 75-92.
[212]  Iembo T, Da Silva R, Pagnocca F, Gomes E: Production, Characterization, and Properties of β-Glucosidase and β-Xylosidase from a Strain of Aureobasidium sp. Applied Biochemistry and Microbiology 2002, 38(6): 549-552.
[213]  Sirilun S, Chaiyasut C, Pengkumsri N, Peerajan S, Chaiyasut K, Suwannalert P, Sivamaruthi BS: Screening and characterization of β-glucosidase production by Saccharomyces cerevisiae. 2016.
[214]  Gautam S, Bundela P, Pandey A, Khan J, Awasthi M, Sarsaiya S: Optimization for the production of cellulase enzyme from municipal solid waste residue by two novel cellulolytic fungi. Biotechnology research international 2011, 2011.
[215]  Melikoglu M, Lin CSK, Webb C: Stepwise optimisation of enzyme production in solid state fermentation of waste bread pieces. Food and Bioproducts Processing 2013, 91(4): 638-646.
[216]  Herr D: Secretion of cellulase and β‐glucosidase by Trichoderma viride ITCC‐1433 in submerged culture on different substrates. Biotechnology and bioengineering 1979, 21(8): 1361-1371.
[217]  Karaffa L, Fekete E, Gamauf C, Szentirmai A, Kubicek CP, Seiboth B: D-Galactose induces cellulase gene expression in Hypocrea jecorina at low growth rates. Microbiology 2006, 152(5): 1507-1514.
[218]  Roy SK, Raha SK, Dey SK, Chakrabarty S: Induction and catabolite repression of β-glucosidase synthesis in Myceliophthora thermophila D-14 (= ATCC 48104). Applied and Environmental Microbiology 1988, 54(8): 2152-2153.
[219]  Suto M, Tomita F: Induction and catabolite repression mechanisms of cellulase in fungi. Journal of bioscience and bioengineering 2001, 92(4): 305-311.
[220]  Mallerman J, Levin L: Characterization of β-Glucosidase Produced by the White Rot Fungus Flammulina velutipes. Journal of Microbiology and Biotechnology 2015, 25(1): 57-65.
[221]  Jeya M, Lee J-K: Optimization of β-glucosidase production by a strain of Stereum hirsutum and its application in enzymatic saccharification. J Microbiol Biotechnol 2013, 23(3): 351-356.
[222]  Garcia NFL, da Silva Santos FR, Gonçalves FA, da Paz MF, Fonseca GG, Leite RSR: Production of β-glucosidase on solid-state fermentation by Lichtheimia ramosa in agroindustrial residues: Characterization and catalytic properties of the enzymatic extract. Electronic Journal of Biotechnology 2015, 18(4): 314-319.
[223]  Abdella A, Mazeed TE-S, El-Baz AF, Yang S-T: Production of β-glucosidase from wheat bran and glycerol by Aspergillus niger in stirred tank and rotating fibrous bed bioreactors. Process Biochemistry 2016, 51(10): 1331-1337.
[224]  Mahapatra S, Vickram AS, Sridharan TB, Parameswari R, Pathy MR: Screening, production, optimization and characterization of β-glucosidase using microbes from shellfish waste. 3 Biotech 2016, 6(2): 213.
[225]  Singhania RR, Sukumaran RK, Rajasree KP, Mathew A, Gottumukkala L, Pandey A: Properties of a major
[226]  β-glucosidase-BGL1 from Aspergillus niger NII-08121 expressed differentially in response to carbon sources. Process Biochemistry 2011, 46(7): 1521-1524.
[227]  Ramani G, Meera B, Vanitha C, Rao M, Gunasekaran P: Production, purification, and characterization of a β-glucosidase of Penicillium funiculosum NCL1. Applied biochemistry and biotechnology 2012, 167(5): 959-972.
[228]  Singhania RR: Beta-Glucosidase from Aspergillus niger NII 08121-Molecular characterization and applications in Bioethanol production. Cochin University of Science and Technology, Cochin, India 2012.
[229]  Collins T, Gerday C, Feller G: Xylanases, xylanase families and extremophilic xylanases. FEMS microbiology reviews 2005, 29(1): 3-23.
[230]  Kun LY: Microbial biotechnology: principles and applications: World Scientific; 2003.
[231]  Venturi LL, de Lourdes Polizeli M, Terenzi HF, dos Prazeres Melo Furriel R, Jorge JA: Extracellular β‐D‐glucosidase from Chaetomium thermophilum var. coprophilum: production, purification and some biochemical properties. Journal of basic microbiology 2002, 42(1): 55-66.
[232]  Ng I-S, Li C-W, Chan S-P, Chir J-L, Chen PT, Tong C-G, Yu S-M, Ho T-HD: High-level production of a thermoacidophilic β-glucosidase from Penicillium citrinum YS40-5 by solid-state fermentation with rice bran. Bioresource technology 2010, 101(4): 1310-1317.
[233]  Yadav PS, Shruthi K, Prasad BS, Chandra MS: Enhanced Production of β-glucosidase by New Strain Aspergillus protuberus on Solid State Fermentation in Rice Husk. Int J Curr Microbiol App Sci 2016, 5(12): 551-564.
[234]  Christakopoulos P, Goodenough PW, Kekos D, Macris BJ, Claeyssens M, Bhat MK: Purification and Characterisation of an Extracellular β‐Glucosidase with Transglycosylation and Exo‐glucosidase Activities from Fusarium oxysporum. European Journal of Biochemistry 1994, 224(2): 379-385.
[235]  Batra J, Beri D, Mishra S: Response Surface Methodology Based Optimization of β-Glucosidase Production from Pichia pastoris. Applied biochemistry and biotechnology 2014, 172(1): 380-393.
[236]  Levin L, Herrmann C, Papinutti VL: Optimization of lignocellulolytic enzyme production by the white-rot fungus Trametes trogii in solid-state fermentation using response surface methodology. Biochemical Engineering Journal 2008, 39(1): 207-214.
[237]  Job J, Sukumaran RK, Jayachandran K: Production of a highly glucose tolerant β-glucosidase by Paecilomyces variotii MG3: optimization of fermentation conditions using Plackett–Burman and Box–Behnken experimental designs. World Journal of Microbiology and Biotechnology 2010, 26(8): 1385-1391.
[238]  Hu J, Arantes V, Saddler JN: The enhancement of enzymatic hydrolysis of lignocellulosic substrates by the addition of accessory enzymes such as xylanase: is it an additive or synergistic effect? Biotechnology for biofuels 2011, 4(1): 1-14.
[239]  Rani V, Mohanram S, Tiwari R, Nain L, Arora A: Beta-glucosidase: Key enzyme in determining efficiency of cellulase and biomass hydrolysis. Journal of Bioprocessing & Biotechniques 2015, 2015.
[240]  Balan V: Current challenges in commercially producing biofuels from lignocellulosic biomass. ISRN biotechnology 2014, 2014.
[241]  Treebupachatsakul T, Nakazawa H, Shinbo H, Fujikawa H, Nagaiwa A, Ochiai N, Kawaguchi T, Nikaido M, Totani K, Shioya K: Heterologously expressed Aspergillus aculeatus β-glucosidase in Saccharomyces cerevisiae is a cost-effective alternative to commercial supplementation of β-glucosidase in industrial ethanol production using Trichoderma reesei cellulases. Journal of bioscience and bioengineering 2016, 121(1): 27-35.
[242]  Dashtban M, Qin W: Overexpression of an exotic thermotolerant beta-glucosidase in trichoderma reesei and its significant increase in cellulolytic activity and saccharification of barley straw. Microb Cell Fact 2012, 11: 63.
[243]  Nakazawa H, Kawai T, Ida N, Shida Y, Kobayashi Y, Okada H, Tani S, Sumitani Ji, Kawaguchi T, Morikawa Y: Construction of a recombinant Trichoderma reesei strain expressing Aspergillus aculeatus β‐glucosidase 1 for efficient biomass conversion. Biotechnology and bioengineering 2012, 109(1): 92-99.
[244]  Pei J, Pang Q, Zhao L, Fan S, Shi H: Thermoanaerobacterium thermosaccharolyticum β-glucosidase: a glucose-tolerant enzyme with high specific activity for cellobiose. Biotechnol Biofuels 2012, 5(31): 1-10.
[245]  Kabera JN, Semana E, Mussa AR, He X: Plant Secondary Metabolites: Biosynthesis, Classification, Function and Pharmacological Properties. Journal of Pharmacy and Pharmacology 2014, 2: 377-392.
[246]  Karimi E, Oskoueian E, Hendra R, Oskoueian A, Jaafar HZ: Phenolic compounds characterization and biological activities of Citrus aurantium bloom. Molecules 2012, 17(2): 1203-1218.
[247]  Servili M, Sordini B, Esposto S, Urbani S, Veneziani G, Di Maio I, Selvaggini R, Taticchi A: Biological activities of phenolic compounds of extra virgin olive oil. Antioxidants 2013, 3(1): 1-23.
[248]  Setchell KD, Brown NM, Zimmer-Nechemias L, Brashear WT, Wolfe BE, Kirschner AS, Heubi JE: Evidence for lack of absorption of soy isoflavone glycosides in humans, supporting the crucial role of intestinal metabolism for bioavailability. The American Journal of Clinical Nutrition 2002, 76(2): 447-453.
[249]  Day AJ, DuPont MS, Ridley S, Rhodes M, Rhodes MJ, Morgan MR, Williamson G: Deglycosylation of flavonoid and isoflavonoid glycosides by human small intestine and liver β-glucosidase activity. FEBS letters 1998, 436(1): 71-75.
[250]  Ávila M, Hidalgo M, Sánchez-Moreno C, Pelaez C, Requena T, de Pascual-Teresa S: Bioconversion of anthocyanin glycosides by Bifidobacteria and Lactobacillus. Food research international 2009, 42(10): 1453-1461.
[251]  Yang S, Wang L, Yan Q, Jiang Z, Li L: Hydrolysis of soybean isoflavone glycosides by a thermostable β-glucosidase from Paecilomycesthermophila. Food Chemistry 2009, 115(4): 1247-1252.
[252]  Song X, Xue Y, Wang Q, Wu X: Comparison of three thermostable β-glucosidases for application in the hydrolysis of soybean isoflavone glycosides. Journal of agricultural and food chemistry 2011, 59(5): 1954-1961.
[253]  Yang L, Ning ZS, Shi CZ, Chang ZY, Huan LY: Purification and characterization of an isoflavone-conjugates-hydrolyzing β-glucosidase from endophytic bacterium. Journal of agricultural and food chemistry 2004, 52(7): 1940-1944.
[254]  Kuo L-C, Cheng W-Y, Wu R-Y, Huang C-J, Lee K-T: Hydrolysis of black soybean isoflavone glycosides by Bacillus subtilis natto. Applied microbiology and biotechnology 2006, 73(2): 314-320.
[255]  Kuo L-C, Lee K-T: Cloning, expression, and characterization of two β-glucosidases from isoflavone glycoside-hydrolyzing Bacillus subtilis natto. Journal of agricultural and food chemistry 2007, 56(1): 119-125.
[256]  Fang W, Song R, Zhang X, Zhang X, Zhang X, Wang X, Fang Z, Xiao Y: Characterization of a novel β-glucosidase from Gongronella sp. W5 and its application in the hydrolysis of soybean isoflavone glycosides. Journal of agricultural and food chemistry 2014, 62(48): 11688-11695.
[257]  Choi HJ, Kim EA, Kim DH, Shin K-S: The Bioconversion of Red Ginseng Ethanol Extract into Compound K by Saccharomyces cerevisiae HJ-014. Mycobiology 2014, 42(3): 256-261.
[258]  Yan Q, Zhou X-W, Zhou W, Li X-W, Feng M-Q, Zhou P: Purification and properties of a novel beta-glucosidase, hydrolyzing ginsenoside Rb1 to CK, from Paecilomyces Bainier. Journal of microbiology and biotechnology 2008, 18(6): 1081-1089.
[259]  Cui C-H, Liu Q-M, Kim J-K, Sung B-H, Kim S-G, Kim S-C, Im W-T: Identification and characterization of a Mucilaginibacter sp. strain QM49 β-glucosidase and its use in the production of the pharmaceutically active minor ginsenosides (S)-Rh1 and (S)-Rg2. Applied and environmental microbiology 2013, 79(19): 5788-5798.
[260]  Nair A, Kuwahara A, Nagase A, Yamaguchi H, Yamazaki T, Hosoya M, Omura A, Kiyomoto K, Yamaguchi M-a, Shimoyama T: Purification, gene cloning, and biochemical characterization of a β-glucosidase capable of hydrolyzing sesaminol triglucoside from Paenibacillus sp. KB0549. PloS one 2013, 8(4).
[261]  Shin K-C, Nam H-K, Oh D-K: Hydrolysis of flavanone glycosides by β-glucosidase from Pyrococcus furiosus and its application to the production of flavanone aglycones from citrus extracts. Journal of agricultural and food chemistry 2013, 61(47): 11532-11540.
[262]  You HJ, Ahn HJ, Kim JY, Wu QQ, Ji GE: High expression of β-glucosidase in Bifidobacterium bifidum BGN4 and application in conversion of isoflavone glucosides during fermentation of soy milk. J Microbiol Biotechnol 2015, 25(4): 469-478.
[263]  Byun DH, Choi HJ, Lee HW, Jeon HY, Choung WJ, Shim JH: Properties and applications of β‐glycosidase from Bacteroides thetaiotaomicron that specifically hydrolyses isoflavone glycosides. International Journal of Food Science & Technology 2015, 50(6): 1405-1412.
[264]  Yan F-y, Xia W, Zhang X-x, Chen S, Nie X-z, Qian L-c: Characterization of β-glucosidase from Aspergillus terreus and its application in the hydrolysis of soybean isoflavones. Journal of Zhejiang University Science B 2016, 17(6): 455-464.
[265]  Maicas S, Mateo JJ: Hydrolysis of terpenyl glycosides in grape juice and other fruit juices: a review. Applied microbiology and biotechnology 2005, 67(3): 322-335.
[266]  Gunata YZ, Bayonove CL, Baumes RL, Cordonnier RE: The aroma of grapes I. Extraction and determination of free and glycosidically bound fractions of some grape aroma components. Journal of Chromatography A 1985, 331: 83-90.
[267]  Williams PJ, Strauss CR, Wilson B, Massy-Westropp RA: Use of C18 reversed-phase liquid chromatography for the isolation of monoterpene glycosides and nor-isoprenoid precursors from grape juice and wines. Journal of Chromatography A 1982, 235(2): 471-480.
[268]  Krammer G, Winterhalter P, Schwab M, Schreier P: Glycosidically bound aroma compounds in the fruits of Prunus species: apricot (P. armeniaca, L.), peach (P. persica, L.), yellow plum (P. domestica, L. ssp. syriaca). Journal of Agricultural and Food Chemistry 1991, 39(4): 778-781.
[269]  Sakho M, Chassagne D, Crouzet J: African Mango Glycosidically Bound Volatile Compounds. Journal of Agricultural and Food Chemistry 1997, 45(3): 883-888.
[270]  Roscher R, Herderich M, Steffen J-P, Schreier P, Schwab W: 2,5-Dimethyl-4-hydroxy-3[2H]-furanone 6′O-malonyl-β-d-glucopyranoside in strawberry fruits. Phytochemistry 1996, 43(1): 155-159.
[271]  Whitaker JR, Voragen AG, Wong DW: Handbook of food enzymology: Marcel Dekker; 2003.
[272]  Mateo J, Jiménez M: Monoterpenes in grape juice and wines. Journal of Chromatography A 2000, 881(1): 557-567.
[273]  Gunata Z, Bitteur S, Brillouet J-M, Bayonove C, Cordonnier R: Sequential enzymic hydrolysis of potentially aromatic glycosides from grape. Carbohydrate Research 1988, 184: 139-149.
[274]  Baffi M, Martin N, Tobal T, Ferrarezi A, Lago J, Boscolo M, Gomes E, Da-Silva R: Purification and Characterization of an Ethanol-Tolerant β-Glucosidase from Sporidiobolus pararoseus and Its Potential for Hydrolysis of Wine Aroma Precursors. Applied biochemistry and biotechnology 2013, 171(7): 1681-1691.
[275]  Baffi MA, Tobal T, Lago JHG, Boscolo M, Gomes E, Da-Silva R: Wine aroma improvement using a β-glucosidase preparation from Aureobasidium pullulans. Applied biochemistry and biotechnology 2013, 169(2): 493-501.
[276]  Michlmayr H, Schümann C, Wurbs P, Da Silva NMBB, Rogl V, Kulbe KD, Andrés M: A β-glucosidase from Oenococcus oeni ATCC BAA-1163 with potential for aroma release in wine: cloning and expression in E. coli. World Journal of Microbiology and Biotechnology 2010, 26(7): 1281-1289.
[277]  Mesas JM, Rodriguez MC, Alegre MT: Basic characterization and partial purification of beta-glucosidase from cell-free extracts of Oenococcus oeni ST81. Lett Appl Microbiol 2012, 55(3): 247-255.
[278]  González-Pombo P, Fariña L, Carrau F, Batista-Viera F, Brena BM: A novel extracellular β-glucosidase from Issatchenkia terricola: Isolation, immobilization and application for aroma enhancement of white Muscat wine. Process Biochemistry 2011, 46(1): 385-389.
[279]  Vervoort Y, Herrera‐Malaver B, Mertens S, Guadalupe Medina V, Duitama J, Michiels L, Derdelinckx G, Voordeckers K, Verstrepen KJ: Characterization of the recombinant Brettanomyces anomalus β‐glucosidase and its potential for bioflavouring. Journal of applied microbiology 2016, 121(3): 721-733.
[280]  Vasconcelos A, Twiddy D, Westby A, Reilly P: Detoxification of cassava during gari preparation. International Journal of Food Science & Technology 1990, 25(2): 198-203.
[281]  Maduagwu EN: Differential effects on the cyanogenic glycoside content of fermenting cassava root pulp by β-glucosidase and microbial activities. Toxicology Letters 1983, 15(4): 335-339.
[282]  Ugwuanyi JO, Harvey LM, McNeil B: Linamarase activities in Bacillus spp. responsible for thermophilic aerobic digestion of agricultural wastes for animal nutrition. Waste Manag 2007, 27(11): 1501-1508.
[283]  Etsuyankpa M, Gimba C, Agbaji E, Omoniyi K, Ndamitso M, Mathew J: Assessment of the Effects of Microbial Fermentation on Selected Anti-Nutrients in the Products of Four Local Cassava Varieties from Niger State, Nigeria. American Journal of Food Science and Technology 2015, 3(3): 89-96.
[284]  Prasad DY, Heitmann JA, Joyce TW: Enzyme deinking of black and white letterpress printed newsprint waste. Progress in Paper Recycling 1992, 1(3): 21-30.
[285]  Pathak P, Bhardwaj NK, Singh AK: Optimization of chemical and enzymatic deinking of photocopier waste paper. BioResources 2011, 6(1): 447-463.
[286]  Lee CK, Ibrahim D, Omar IC: Enzymatic deinking of various types of waste paper: Efficiency and characteristics. Process Biochemistry 2013, 48(2): 299-305.
[287]  Elliston A, Collins SRA, Faulds CB, Roberts IN, Waldron KW: Biorefining of Waste Paper Biomass: Increasing the Concentration of Glucose by Optimising Enzymatic Hydrolysis. Applied biochemistry and biotechnology 2014, 172(7): 3621-3634.
[288]  Bruins ME, Strubel M, van Lieshout JFT, Janssen AEM, Boom RM: Oligosaccharide synthesis by the hyperthermostable β-glucosidase from Pyrococcus furiosus: kinetics and modelling. Enzyme and Microbial Technology 2003, 33(1): 3-11.
[289]  Kawai R, Igarashi K, Kitaoka M, Ishii T, Samejima M: Kinetics of substrate transglycosylation by glycoside hydrolase family 3 glucan (1→3)-β-glucosidase from the white-rot fungus Phanerochaete chrysosporium. Carbohydrate Research 2004, 339(18): 2851-2857.
[290]  Rather M, Mishra S: β-Glycosidases: An alternative enzyme based method for synthesis of alkylglycosides. sustain chem process 2013, 1(1): 1-15.
[291]  Otto RT, Bornscheuer UT, Syldatk C, Schmid RD: Synthesis of aromatic n-alkyl-glucoside esters in a coupled β-glucosidase and lipase reaction. Biotechnology letters 1998, 20(4): 437-440.